{"title":"会议室的人脸识别","authors":"R. Gross, Jie Yang, A. Waibel","doi":"10.1109/AFGR.2000.840649","DOIUrl":null,"url":null,"abstract":"We investigate the recognition of human faces in a meeting room. The major challenges of identifying human faces in this environment include low quality of input images, poor illumination, unrestricted head poses and continuously changing facial expressions and occlusion. In order to address these problems we propose a novel algorithm, dynamic space warping (DSW). The basic idea of the algorithm is to combine local features under certain spatial constraints. We compare DSW with the eigenface approach on data collected from various meetings. We have tested both front and profile face images and images with two stages of occlusion. The experimental results indicate that the DSW approach outperforms the eigenface approach in both cases.","PeriodicalId":360065,"journal":{"name":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Face recognition in a meeting room\",\"authors\":\"R. Gross, Jie Yang, A. Waibel\",\"doi\":\"10.1109/AFGR.2000.840649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the recognition of human faces in a meeting room. The major challenges of identifying human faces in this environment include low quality of input images, poor illumination, unrestricted head poses and continuously changing facial expressions and occlusion. In order to address these problems we propose a novel algorithm, dynamic space warping (DSW). The basic idea of the algorithm is to combine local features under certain spatial constraints. We compare DSW with the eigenface approach on data collected from various meetings. We have tested both front and profile face images and images with two stages of occlusion. The experimental results indicate that the DSW approach outperforms the eigenface approach in both cases.\",\"PeriodicalId\":360065,\"journal\":{\"name\":\"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AFGR.2000.840649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFGR.2000.840649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

我们研究了在会议室中对人脸的识别。在这种环境下识别人脸的主要挑战包括输入图像质量低、光照差、不受限制的头部姿势以及不断变化的面部表情和遮挡。为了解决这些问题,我们提出了一种新的算法——动态空间翘曲(DSW)。该算法的基本思想是在一定的空间约束下对局部特征进行组合。我们比较DSW与特征面方法从各种会议收集的数据。我们测试了正面和侧面的人脸图像以及两个阶段遮挡的图像。实验结果表明,DSW方法在两种情况下都优于特征面方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Face recognition in a meeting room
We investigate the recognition of human faces in a meeting room. The major challenges of identifying human faces in this environment include low quality of input images, poor illumination, unrestricted head poses and continuously changing facial expressions and occlusion. In order to address these problems we propose a novel algorithm, dynamic space warping (DSW). The basic idea of the algorithm is to combine local features under certain spatial constraints. We compare DSW with the eigenface approach on data collected from various meetings. We have tested both front and profile face images and images with two stages of occlusion. The experimental results indicate that the DSW approach outperforms the eigenface approach in both cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classifying facial attributes using a 2-D Gabor wavelet representation and discriminant analysis Facial tracking and animation using a 3D sensor Automatic handwriting gestures recognition using hidden Markov models Real-time stereo tracking for head pose and gaze estimation Real-time detection of nodding and head-shaking by directly detecting and tracking the "between-eyes"
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1