PrOLoc:使用部分同态加密的私有观察者的弹性定位

Amr Al-Anwar, Yasser Shoukry, Supriyo Chakraborty, Bharathan Balaji, Paul D. Martin, P. Tabuada, M. Srivastava
{"title":"PrOLoc:使用部分同态加密的私有观察者的弹性定位","authors":"Amr Al-Anwar, Yasser Shoukry, Supriyo Chakraborty, Bharathan Balaji, Paul D. Martin, P. Tabuada, M. Srivastava","doi":"10.1145/3055031.3055080","DOIUrl":null,"url":null,"abstract":"Aided by advances in sensors and algorithms, systems for localizing and tracking target objects or events have become ubiquitous in recent years. Most of these systems operate on the principle of fusing measurements of distance and/or direction to the target made by a set of spatially distributed observers using sensors that measure signals such as RF, acoustic, or optical. The computation of the target's location is done using multilateration and multiangulation algorithms, typically running at an aggregation node that, in addition to the distance/direction measurements, also needs to know the observers' locations. This presents a privacy risk for an observer that does not trust the aggregation node or other observers and could in turn lead to lack of participation. For example, consider a crowd-sourced sensing system where citizens are required to report security threats, or a smart car, stranded with a malfunctioning GPS, sending out localization requests to neighboring cars -- in both cases, observer (i.e., citizens and cars respectively) participation can be increased by keeping their location private. This paper presents PrOLoc, a localization system that combines partially homomorphic encryption with a new way of structuring the localization problem to enable efficient and accurate computation of a target's location without requiring observers to make public their locations or measurements. Moreover, and unlike previously proposed perturbation based techniques, PrOLoc is also resilient to malicious active false data injection attacks. We present two realizations of our approach, provide rigorous theoretical guarantees, and also compare the performance of each against traditional methods. Our experiments on real hardware demonstrate that PrOLoc yields location estimates that are accurate while being at least 500\\times faster than state-of-art secure function evaluation techniques.","PeriodicalId":228318,"journal":{"name":"2017 16th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"PrOLoc: Resilient Localization with Private Observers Using Partial Homomorphic Encryption\",\"authors\":\"Amr Al-Anwar, Yasser Shoukry, Supriyo Chakraborty, Bharathan Balaji, Paul D. Martin, P. Tabuada, M. Srivastava\",\"doi\":\"10.1145/3055031.3055080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aided by advances in sensors and algorithms, systems for localizing and tracking target objects or events have become ubiquitous in recent years. Most of these systems operate on the principle of fusing measurements of distance and/or direction to the target made by a set of spatially distributed observers using sensors that measure signals such as RF, acoustic, or optical. The computation of the target's location is done using multilateration and multiangulation algorithms, typically running at an aggregation node that, in addition to the distance/direction measurements, also needs to know the observers' locations. This presents a privacy risk for an observer that does not trust the aggregation node or other observers and could in turn lead to lack of participation. For example, consider a crowd-sourced sensing system where citizens are required to report security threats, or a smart car, stranded with a malfunctioning GPS, sending out localization requests to neighboring cars -- in both cases, observer (i.e., citizens and cars respectively) participation can be increased by keeping their location private. This paper presents PrOLoc, a localization system that combines partially homomorphic encryption with a new way of structuring the localization problem to enable efficient and accurate computation of a target's location without requiring observers to make public their locations or measurements. Moreover, and unlike previously proposed perturbation based techniques, PrOLoc is also resilient to malicious active false data injection attacks. We present two realizations of our approach, provide rigorous theoretical guarantees, and also compare the performance of each against traditional methods. Our experiments on real hardware demonstrate that PrOLoc yields location estimates that are accurate while being at least 500\\\\times faster than state-of-art secure function evaluation techniques.\",\"PeriodicalId\":228318,\"journal\":{\"name\":\"2017 16th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 16th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055031.3055080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055031.3055080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

近年来,在传感器和算法进步的帮助下,定位和跟踪目标物体或事件的系统变得无处不在。这些系统的大多数工作原理是将距离和/或方向的测量结果融合到目标上,这些测量结果是由一组空间分布的观测者使用测量信号(如射频、声学或光学信号)的传感器进行的。目标位置的计算是使用多倍体和多角度算法完成的,通常在聚合节点上运行,除了距离/方向测量外,还需要知道观察者的位置。这给不信任聚合节点或其他观察者的观察者带来了隐私风险,进而可能导致缺乏参与。例如,考虑一个众包传感系统,其中公民需要报告安全威胁,或者一辆智能汽车,由于GPS故障而陷入困境,向邻近的汽车发送定位请求——在这两种情况下,观察者(即分别是公民和汽车)的参与都可以通过保持其位置的私密性来增加。PrOLoc是一种将部分同态加密与一种新的定位问题构造方法相结合的定位系统,可以在不需要观察者公开其位置或测量值的情况下高效准确地计算出目标的位置。此外,与之前提出的基于扰动的技术不同,PrOLoc还能抵御恶意的主动虚假数据注入攻击。我们提出了我们方法的两种实现,提供了严格的理论保证,并将每种方法的性能与传统方法进行了比较。我们在真实硬件上的实验表明,PrOLoc产生的位置估计是准确的,同时比最先进的安全功能评估技术至少快500倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PrOLoc: Resilient Localization with Private Observers Using Partial Homomorphic Encryption
Aided by advances in sensors and algorithms, systems for localizing and tracking target objects or events have become ubiquitous in recent years. Most of these systems operate on the principle of fusing measurements of distance and/or direction to the target made by a set of spatially distributed observers using sensors that measure signals such as RF, acoustic, or optical. The computation of the target's location is done using multilateration and multiangulation algorithms, typically running at an aggregation node that, in addition to the distance/direction measurements, also needs to know the observers' locations. This presents a privacy risk for an observer that does not trust the aggregation node or other observers and could in turn lead to lack of participation. For example, consider a crowd-sourced sensing system where citizens are required to report security threats, or a smart car, stranded with a malfunctioning GPS, sending out localization requests to neighboring cars -- in both cases, observer (i.e., citizens and cars respectively) participation can be increased by keeping their location private. This paper presents PrOLoc, a localization system that combines partially homomorphic encryption with a new way of structuring the localization problem to enable efficient and accurate computation of a target's location without requiring observers to make public their locations or measurements. Moreover, and unlike previously proposed perturbation based techniques, PrOLoc is also resilient to malicious active false data injection attacks. We present two realizations of our approach, provide rigorous theoretical guarantees, and also compare the performance of each against traditional methods. Our experiments on real hardware demonstrate that PrOLoc yields location estimates that are accurate while being at least 500\times faster than state-of-art secure function evaluation techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Coresets for Differentially Private K-Means Clustering and Applications to Privacy in Mobile Sensor Networks SurfaceVibe: Vibration-Based Tap & Swipe Tracking on Ubiquitous Surfaces 3D Through-Wall Imaging with Unmanned Aerial Vehicles Using WiFi MinHash Hierarchy for Privacy Preserving Trajectory Sensing and Query VideoMec: A Metadata-Enhanced Crowdsourcing System for Mobile Videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1