基于改进鲸鱼优化算法的LQR控制器优化设计

Qianhao Zhai, Xiaoyu Xia, Siling Feng, Mengxing Huang
{"title":"基于改进鲸鱼优化算法的LQR控制器优化设计","authors":"Qianhao Zhai, Xiaoyu Xia, Siling Feng, Mengxing Huang","doi":"10.1109/ICICT50521.2020.00067","DOIUrl":null,"url":null,"abstract":"Whale optimization algorithm (WOA) is a typical swarm intelligence algorithm. It has been applied to many different optimization problems due to its advantages of simple structure, few parameters and strong optimization ability. However, it has not been used in the optimization of LQR controller. In this paper, we apply the mproved WOA to this problem. It is compared with the traditional optimization algorithm (Particle swarm optimization, genetic algorithm, Grey Wolf optimization algorithm). Experimental results show that the improved WOA performs well in the optimization of LQR controller.","PeriodicalId":445000,"journal":{"name":"2020 3rd International Conference on Information and Computer Technologies (ICICT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimization Design of LQR Controller Based on Improved Whale Optimization Algorithm\",\"authors\":\"Qianhao Zhai, Xiaoyu Xia, Siling Feng, Mengxing Huang\",\"doi\":\"10.1109/ICICT50521.2020.00067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Whale optimization algorithm (WOA) is a typical swarm intelligence algorithm. It has been applied to many different optimization problems due to its advantages of simple structure, few parameters and strong optimization ability. However, it has not been used in the optimization of LQR controller. In this paper, we apply the mproved WOA to this problem. It is compared with the traditional optimization algorithm (Particle swarm optimization, genetic algorithm, Grey Wolf optimization algorithm). Experimental results show that the improved WOA performs well in the optimization of LQR controller.\",\"PeriodicalId\":445000,\"journal\":{\"name\":\"2020 3rd International Conference on Information and Computer Technologies (ICICT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 3rd International Conference on Information and Computer Technologies (ICICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICT50521.2020.00067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Information and Computer Technologies (ICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT50521.2020.00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

鲸鱼优化算法(WOA)是一种典型的群体智能算法。由于其结构简单、参数少、优化能力强等优点,已被应用于许多不同的优化问题。然而,该方法尚未应用于LQR控制器的优化。在本文中,我们将改进的WOA应用于该问题。并与传统的优化算法(粒子群算法、遗传算法、灰狼优化算法)进行了比较。实验结果表明,改进的WOA算法对LQR控制器的优化效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization Design of LQR Controller Based on Improved Whale Optimization Algorithm
Whale optimization algorithm (WOA) is a typical swarm intelligence algorithm. It has been applied to many different optimization problems due to its advantages of simple structure, few parameters and strong optimization ability. However, it has not been used in the optimization of LQR controller. In this paper, we apply the mproved WOA to this problem. It is compared with the traditional optimization algorithm (Particle swarm optimization, genetic algorithm, Grey Wolf optimization algorithm). Experimental results show that the improved WOA performs well in the optimization of LQR controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Significance of Agile Software Development and SQA Powered by Automation Improved Generalizability of Deep-Fakes Detection using Transfer Learning Based CNN Framework A New Homomorphic Message Authentication Code Scheme for Network Coding Conspiracy and Rumor Correction: Analysis of Social Media Users' Comments A Novel System for Ammonia Gas Control in Broiler Production Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1