K-NN回归在煤机相关变量预测中的应用

Vedika Agrawal, Shubham Agrawal, Sayak Nag, D. Chakraborty, B. K. Panigrahi, P. Subbarao
{"title":"K-NN回归在煤机相关变量预测中的应用","authors":"Vedika Agrawal, Shubham Agrawal, Sayak Nag, D. Chakraborty, B. K. Panigrahi, P. Subbarao","doi":"10.1109/ICCPCT.2016.7530275","DOIUrl":null,"url":null,"abstract":"Modern coal fired power plants are required to handle a variety of coal types and accommodate large load changes. Coal mills grind the coal to required fineness and primary air dries and supplies the pulverized fuel to the burners. The dynamic response of coal mills is poor due to simple controls and various faults occurring inside the milling system. In this paper, an approach for time series prediction of n-step ahead values of important variables associated with the milling system is provided. A simple, data driven, non parametric technique i.e. k-NN regression is used for the prediction. The prediction of mill variables is helpful for improving controls and optimizing the mill operation. The proposed approach is applied for 5 minute ahead prediction and validated using the actual data obtained from a coal fired power plant in Gujarat, India.","PeriodicalId":431894,"journal":{"name":"2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Application of K-NN regression for predicting coal mill related variables\",\"authors\":\"Vedika Agrawal, Shubham Agrawal, Sayak Nag, D. Chakraborty, B. K. Panigrahi, P. Subbarao\",\"doi\":\"10.1109/ICCPCT.2016.7530275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern coal fired power plants are required to handle a variety of coal types and accommodate large load changes. Coal mills grind the coal to required fineness and primary air dries and supplies the pulverized fuel to the burners. The dynamic response of coal mills is poor due to simple controls and various faults occurring inside the milling system. In this paper, an approach for time series prediction of n-step ahead values of important variables associated with the milling system is provided. A simple, data driven, non parametric technique i.e. k-NN regression is used for the prediction. The prediction of mill variables is helpful for improving controls and optimizing the mill operation. The proposed approach is applied for 5 minute ahead prediction and validated using the actual data obtained from a coal fired power plant in Gujarat, India.\",\"PeriodicalId\":431894,\"journal\":{\"name\":\"2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCPCT.2016.7530275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPCT.2016.7530275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

现代燃煤电厂需要处理多种煤种,并适应较大的负荷变化。磨煤机将煤磨成所需的细度,一次风干后将粉碎的燃料提供给燃烧器。由于控制简单,磨粉系统内部存在各种故障,磨粉机的动态响应较差。本文提出了一种铣削系统相关重要变量n步超前值的时间序列预测方法。一个简单的,数据驱动的,非参数技术,即k-NN回归用于预测。轧机变量的预测有助于改进控制和优化轧机运行。将该方法应用于提前5分钟预测,并使用印度古吉拉特邦燃煤电厂的实际数据进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of K-NN regression for predicting coal mill related variables
Modern coal fired power plants are required to handle a variety of coal types and accommodate large load changes. Coal mills grind the coal to required fineness and primary air dries and supplies the pulverized fuel to the burners. The dynamic response of coal mills is poor due to simple controls and various faults occurring inside the milling system. In this paper, an approach for time series prediction of n-step ahead values of important variables associated with the milling system is provided. A simple, data driven, non parametric technique i.e. k-NN regression is used for the prediction. The prediction of mill variables is helpful for improving controls and optimizing the mill operation. The proposed approach is applied for 5 minute ahead prediction and validated using the actual data obtained from a coal fired power plant in Gujarat, India.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A study on the increasing in the performance of a solar photovoltaic cell during shading condition Design and analysis of hybrid DC-DC boost converter in continuous conduction mode Optimal control of islanded microgrid with adaptive fuzzy logic & PI controller using HBCC under various voltage & load variation Mouse behaviour based multi-factor authentication using neural networks A novel approach to maximize network life time by reducing power consumption level using CGNT model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1