{"title":"微切削过程对应死金属区的有限元模拟","authors":"Yongqin Ren, Bowen Song, Xiubing Jing, Yun Chen","doi":"10.1109/3M-NANO56083.2022.9941564","DOIUrl":null,"url":null,"abstract":"The past thirty years have seen increasingly rapid advances in the field of micro-cutting technology. However, due to the existence of the tool edge, the material flowing mechanism is different from the macro-cutting, which makes confusion of cutting force and energy when the cutting thickness decrease to a certain extent. Dead metal zone (DMZ) is an important component in the material flowing and plays a key role in the micro-cutting mechanism. In this study, multiple finite element (FE) simulations of cutting models were carried out to obtain the influence of thicknesses and materials on DMZ. The Arbitrary Lagrangian-Eulerian method is adopted in the simulation process to improve accuracy and avoid excessive deformation. The results showed that the position and size of DMZ are variable according to the thicknesses. While different materials also possess peculiar material flowing mechanisms, especially in hard materials, like titanium alloy.","PeriodicalId":370631,"journal":{"name":"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FE Simulation of Dead Metal Zone Corresponding to the Micro-cutting Process\",\"authors\":\"Yongqin Ren, Bowen Song, Xiubing Jing, Yun Chen\",\"doi\":\"10.1109/3M-NANO56083.2022.9941564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The past thirty years have seen increasingly rapid advances in the field of micro-cutting technology. However, due to the existence of the tool edge, the material flowing mechanism is different from the macro-cutting, which makes confusion of cutting force and energy when the cutting thickness decrease to a certain extent. Dead metal zone (DMZ) is an important component in the material flowing and plays a key role in the micro-cutting mechanism. In this study, multiple finite element (FE) simulations of cutting models were carried out to obtain the influence of thicknesses and materials on DMZ. The Arbitrary Lagrangian-Eulerian method is adopted in the simulation process to improve accuracy and avoid excessive deformation. The results showed that the position and size of DMZ are variable according to the thicknesses. While different materials also possess peculiar material flowing mechanisms, especially in hard materials, like titanium alloy.\",\"PeriodicalId\":370631,\"journal\":{\"name\":\"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3M-NANO56083.2022.9941564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO56083.2022.9941564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FE Simulation of Dead Metal Zone Corresponding to the Micro-cutting Process
The past thirty years have seen increasingly rapid advances in the field of micro-cutting technology. However, due to the existence of the tool edge, the material flowing mechanism is different from the macro-cutting, which makes confusion of cutting force and energy when the cutting thickness decrease to a certain extent. Dead metal zone (DMZ) is an important component in the material flowing and plays a key role in the micro-cutting mechanism. In this study, multiple finite element (FE) simulations of cutting models were carried out to obtain the influence of thicknesses and materials on DMZ. The Arbitrary Lagrangian-Eulerian method is adopted in the simulation process to improve accuracy and avoid excessive deformation. The results showed that the position and size of DMZ are variable according to the thicknesses. While different materials also possess peculiar material flowing mechanisms, especially in hard materials, like titanium alloy.