基于VR的唐卡图像场景切换研究

Jianbang Jia, Chuan-qian Tang, Shou-Liang Tang, Huan Wu, Xiaojing Liu, Zhiqiang Liu
{"title":"基于VR的唐卡图像场景切换研究","authors":"Jianbang Jia, Chuan-qian Tang, Shou-Liang Tang, Huan Wu, Xiaojing Liu, Zhiqiang Liu","doi":"10.1109/icvrv.2017.00103","DOIUrl":null,"url":null,"abstract":"With the development of computer simulation technology and computer graphics, virtual reality (VR) has become the hotspot and difficulty in the current world research. This paper embarks from the actual and presents a Thangka image browsing research based on VR. The second order gradient enhancement of Sobel operator algorithm, maximum entropy segmentation algorithm, the most gray value segmentation algorithm and point to linear symmetry method are used to realize the VR-based Thangka image scene switching. Experimental results show that the processing time obtained through Leap Motion is 20-30 ms/frame, and the accuracy of rigid body region detection is more than 70%. It can basically meet the requirements of real-time and accurate handoff of Thangka image scene.","PeriodicalId":187934,"journal":{"name":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","volume":"89 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research on Thangka Image Scene Switching Based on VR\",\"authors\":\"Jianbang Jia, Chuan-qian Tang, Shou-Liang Tang, Huan Wu, Xiaojing Liu, Zhiqiang Liu\",\"doi\":\"10.1109/icvrv.2017.00103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of computer simulation technology and computer graphics, virtual reality (VR) has become the hotspot and difficulty in the current world research. This paper embarks from the actual and presents a Thangka image browsing research based on VR. The second order gradient enhancement of Sobel operator algorithm, maximum entropy segmentation algorithm, the most gray value segmentation algorithm and point to linear symmetry method are used to realize the VR-based Thangka image scene switching. Experimental results show that the processing time obtained through Leap Motion is 20-30 ms/frame, and the accuracy of rigid body region detection is more than 70%. It can basically meet the requirements of real-time and accurate handoff of Thangka image scene.\",\"PeriodicalId\":187934,\"journal\":{\"name\":\"2017 International Conference on Virtual Reality and Visualization (ICVRV)\",\"volume\":\"89 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Virtual Reality and Visualization (ICVRV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icvrv.2017.00103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icvrv.2017.00103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着计算机仿真技术和计算机图形学的发展,虚拟现实(VR)已成为当今世界研究的热点和难点。本文从实际出发,提出了一种基于VR的唐卡图像浏览研究。采用Sobel算子二阶梯度增强算法、最大熵分割算法、最大灰度值分割算法和点对线对称法实现了基于vr的唐卡图像场景切换。实验结果表明,通过Leap Motion获得的处理时间为20 ~ 30 ms/帧,刚体区域检测精度达70%以上。基本能满足唐卡图像场景实时、准确切换的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on Thangka Image Scene Switching Based on VR
With the development of computer simulation technology and computer graphics, virtual reality (VR) has become the hotspot and difficulty in the current world research. This paper embarks from the actual and presents a Thangka image browsing research based on VR. The second order gradient enhancement of Sobel operator algorithm, maximum entropy segmentation algorithm, the most gray value segmentation algorithm and point to linear symmetry method are used to realize the VR-based Thangka image scene switching. Experimental results show that the processing time obtained through Leap Motion is 20-30 ms/frame, and the accuracy of rigid body region detection is more than 70%. It can basically meet the requirements of real-time and accurate handoff of Thangka image scene.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Feature-Enhanced Surfaces from Incomplete Point Cloud with Segmentation and Curve Skeleton Information Efficiently Disassemble-and-Pack for Mechanism Surface Flattening Based on Energy Fabric Deformation Model in Garment Design A Novel Intelligent Thyroid Nodule Diagnosis System over Ultrasound Images Based on Deep Learning A Novel Reconstruction Method of 3D Heart Geometry Atlas Based on Visible Human
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1