纳米颗粒/聚合物复合材料的有限变形相场断裂模型

B. Arash, R. Rolfes
{"title":"纳米颗粒/聚合物复合材料的有限变形相场断裂模型","authors":"B. Arash, R. Rolfes","doi":"10.23967/composites.2021.038","DOIUrl":null,"url":null,"abstract":"The computational modeling of fracture in the nanocomposites requires an accurate prediction of crack initiation and propagation in the materials. For this, generalizing Griffith’s theory, phase-field fracture models (PFMs) provide variational fracture models by minimizing potential energy that consists of stored bulk energy, the work of external forces, and the surface energy [1, 2]. This work presents the development of a finite deformation PFM to analyze the viscoelastic behavior of boehmite nanoparticle/epoxy nanocomposites. To characterize the rate-dependent fracture evolution, the free energy is additively decomposed into an equilibrium, a non-equilibrium, and a volumetric part with a varying definition under tensile and compressive deformation. Furthermore, the Guth–Gold and modified Kitagawa models are adopted to consider the effect of the nanoparticle contents and temperature on the nanocomposites’ fracture behavior. The applicability of the proposed model is evaluated by comparing the numerical results of compact-tension tests with experimental data. The experimental–numerical validation justifies the predictive capability of the model. Numerical simulations are also performed to study the effect of temperature and loading rate on the force-displacement response of boehmite nanoparticle/epoxy samples in the compacttension tests.","PeriodicalId":392595,"journal":{"name":"VIII Conference on Mechanical Response of Composites","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Finite Deformation Phase-Field Fracture Model for Nanoparticle/Polymer Composites\",\"authors\":\"B. Arash, R. Rolfes\",\"doi\":\"10.23967/composites.2021.038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The computational modeling of fracture in the nanocomposites requires an accurate prediction of crack initiation and propagation in the materials. For this, generalizing Griffith’s theory, phase-field fracture models (PFMs) provide variational fracture models by minimizing potential energy that consists of stored bulk energy, the work of external forces, and the surface energy [1, 2]. This work presents the development of a finite deformation PFM to analyze the viscoelastic behavior of boehmite nanoparticle/epoxy nanocomposites. To characterize the rate-dependent fracture evolution, the free energy is additively decomposed into an equilibrium, a non-equilibrium, and a volumetric part with a varying definition under tensile and compressive deformation. Furthermore, the Guth–Gold and modified Kitagawa models are adopted to consider the effect of the nanoparticle contents and temperature on the nanocomposites’ fracture behavior. The applicability of the proposed model is evaluated by comparing the numerical results of compact-tension tests with experimental data. The experimental–numerical validation justifies the predictive capability of the model. Numerical simulations are also performed to study the effect of temperature and loading rate on the force-displacement response of boehmite nanoparticle/epoxy samples in the compacttension tests.\",\"PeriodicalId\":392595,\"journal\":{\"name\":\"VIII Conference on Mechanical Response of Composites\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VIII Conference on Mechanical Response of Composites\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23967/composites.2021.038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VIII Conference on Mechanical Response of Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/composites.2021.038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纳米复合材料断裂的计算模型需要对材料中裂纹的起裂和扩展进行准确的预测。为此,推广Griffith的理论,相场断裂模型(pfm)通过最小化由储存的体能、外力的功和表面能组成的势能来提供变分断裂模型[1,2]。本工作提出了一种有限变形PFM的发展,以分析薄水铝石纳米颗粒/环氧纳米复合材料的粘弹性行为。为了表征随速率变化的断裂演化,将自由能累加分解为平衡、非平衡和在拉伸和压缩变形下具有不同定义的体积部分。此外,采用Guth-Gold模型和修正的Kitagawa模型考虑了纳米颗粒含量和温度对纳米复合材料断裂行为的影响。通过将压紧试验的数值结果与实验数据进行对比,验证了该模型的适用性。实验和数值验证验证了模型的预测能力。通过数值模拟研究了温度和加载速率对纳米薄水铝石/环氧树脂试样压紧拉伸力-位移响应的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Finite Deformation Phase-Field Fracture Model for Nanoparticle/Polymer Composites
The computational modeling of fracture in the nanocomposites requires an accurate prediction of crack initiation and propagation in the materials. For this, generalizing Griffith’s theory, phase-field fracture models (PFMs) provide variational fracture models by minimizing potential energy that consists of stored bulk energy, the work of external forces, and the surface energy [1, 2]. This work presents the development of a finite deformation PFM to analyze the viscoelastic behavior of boehmite nanoparticle/epoxy nanocomposites. To characterize the rate-dependent fracture evolution, the free energy is additively decomposed into an equilibrium, a non-equilibrium, and a volumetric part with a varying definition under tensile and compressive deformation. Furthermore, the Guth–Gold and modified Kitagawa models are adopted to consider the effect of the nanoparticle contents and temperature on the nanocomposites’ fracture behavior. The applicability of the proposed model is evaluated by comparing the numerical results of compact-tension tests with experimental data. The experimental–numerical validation justifies the predictive capability of the model. Numerical simulations are also performed to study the effect of temperature and loading rate on the force-displacement response of boehmite nanoparticle/epoxy samples in the compacttension tests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the use of artificial neural networks and micromechanical analysis for prediciting elastic properties of unidirectional composites Fracture Properties of Agglomerated Nanoparticle Reinforced Polymers: A Coarse-Grained Model Microscale Analysis of the Influence of Void Content, Distribution and Size on Fiber-Reinforced Polymers A Multi-Scale Modelling Approach Predicting the Effect of Porosity on the Transverse Strength in Composites Encounting for Intra/Interlaminar Coupling by Using both In-Plane and Out-of-Plane Strains in an Hybrid Interface Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1