基于延迟补偿和熵约束字典学习的地震信号压缩

Xin Tian, A. Abdi, E. Liu, F. Fekri
{"title":"基于延迟补偿和熵约束字典学习的地震信号压缩","authors":"Xin Tian, A. Abdi, E. Liu, F. Fekri","doi":"10.1109/SPAWC.2018.8446034","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new sparse dictionary learning scheme for lossy compression of seismic signals collected at a single sensor from multiple source shots. The method leverages the entropy constraint and delay compensation for dictionary learning. Using the proposed method for delay compensation in seismic data squeezes more redundancy out of the data which results in a sparser representation for a given dictionary. The objective of entropy constraint term in dictionary learning is to make the sparse coefficients tailored to the compression objective. To solve the above hybrid dictionary learning problem, delay-compensated and entropy-constrained dictionary learning is developed and alternating scheme is proposed for optimization. Furthermore, an offline-training-online-testing way is adopted for the proposed dictionary learning scheme in the seismic data compression. The experimental results demonstrate the effectiveness of the proposed method for maintaining a desirable rate-distortion trade-off for the seismic signal compression.","PeriodicalId":240036,"journal":{"name":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Seismic Signal Compression Through Delay Compensated and Entropy Constrained Dictionary Learning\",\"authors\":\"Xin Tian, A. Abdi, E. Liu, F. Fekri\",\"doi\":\"10.1109/SPAWC.2018.8446034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new sparse dictionary learning scheme for lossy compression of seismic signals collected at a single sensor from multiple source shots. The method leverages the entropy constraint and delay compensation for dictionary learning. Using the proposed method for delay compensation in seismic data squeezes more redundancy out of the data which results in a sparser representation for a given dictionary. The objective of entropy constraint term in dictionary learning is to make the sparse coefficients tailored to the compression objective. To solve the above hybrid dictionary learning problem, delay-compensated and entropy-constrained dictionary learning is developed and alternating scheme is proposed for optimization. Furthermore, an offline-training-online-testing way is adopted for the proposed dictionary learning scheme in the seismic data compression. The experimental results demonstrate the effectiveness of the proposed method for maintaining a desirable rate-distortion trade-off for the seismic signal compression.\",\"PeriodicalId\":240036,\"journal\":{\"name\":\"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2018.8446034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2018.8446034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一种新的稀疏字典学习方案,用于从多个源拍摄的单个传感器采集的地震信号的有损压缩。该方法利用熵约束和延迟补偿进行字典学习。使用该方法对地震数据进行延迟补偿,可以从数据中挤出更多的冗余,从而使给定字典的表示更稀疏。字典学习中熵约束项的目标是使稀疏系数与压缩目标相适应。为了解决上述混合字典学习问题,提出了延迟补偿和熵约束的字典学习方法,并提出了交替优化方案。此外,提出的字典学习方案在地震数据压缩中采用离线训练-在线测试的方式。实验结果表明,该方法能有效地在地震信号压缩中保持理想的率失真权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seismic Signal Compression Through Delay Compensated and Entropy Constrained Dictionary Learning
In this paper, we propose a new sparse dictionary learning scheme for lossy compression of seismic signals collected at a single sensor from multiple source shots. The method leverages the entropy constraint and delay compensation for dictionary learning. Using the proposed method for delay compensation in seismic data squeezes more redundancy out of the data which results in a sparser representation for a given dictionary. The objective of entropy constraint term in dictionary learning is to make the sparse coefficients tailored to the compression objective. To solve the above hybrid dictionary learning problem, delay-compensated and entropy-constrained dictionary learning is developed and alternating scheme is proposed for optimization. Furthermore, an offline-training-online-testing way is adopted for the proposed dictionary learning scheme in the seismic data compression. The experimental results demonstrate the effectiveness of the proposed method for maintaining a desirable rate-distortion trade-off for the seismic signal compression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural Successive Cancellation Decoding of Polar Codes Analysis of Some Well-Rounded Lattices in Wiretap Channels Two-Way Full-Duplex MIMO with Hybrid TX-RX MSE Minimization and Interference Cancellation Minimum Energy Resource Allocation in FOG Radio Access Network with Fronthaul and Latency Constraints A Distance and Bandwidth Dependent Adaptive Modulation Scheme for THz Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1