功率谱估计中波动信号的子带分解

J. Zajacek, L. Grmela
{"title":"功率谱估计中波动信号的子带分解","authors":"J. Zajacek, L. Grmela","doi":"10.1109/WISP.2007.4447530","DOIUrl":null,"url":null,"abstract":"The noise spectroscopy is used to determinate quality and reliability of semiconductor materials. We have used the means of time-frequency analysis for processing of long time duration stochastic signal. Tree-structured FIR filter bank implemented in a recursive way for octave dividing frequency band was designed as full parallel computational algorithm for power spectral density estimation. In the very low frequency area we will obtain high resolution and low level variance of PSD.","PeriodicalId":164902,"journal":{"name":"2007 IEEE International Symposium on Intelligent Signal Processing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Sub-Band decomposition of Fluctuated signals for the Estimation of Power Spectra\",\"authors\":\"J. Zajacek, L. Grmela\",\"doi\":\"10.1109/WISP.2007.4447530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The noise spectroscopy is used to determinate quality and reliability of semiconductor materials. We have used the means of time-frequency analysis for processing of long time duration stochastic signal. Tree-structured FIR filter bank implemented in a recursive way for octave dividing frequency band was designed as full parallel computational algorithm for power spectral density estimation. In the very low frequency area we will obtain high resolution and low level variance of PSD.\",\"PeriodicalId\":164902,\"journal\":{\"name\":\"2007 IEEE International Symposium on Intelligent Signal Processing\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Intelligent Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISP.2007.4447530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Intelligent Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISP.2007.4447530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

噪声光谱用于半导体材料的质量和可靠性的测定。我们采用时频分析的方法处理长时间持续时间的随机信号。采用递归的方式实现了倍频分频带的树结构FIR滤波器组,并将其设计为功率谱密度估计的全并行计算算法。在甚低频区,我们将获得高分辨率和低水平方差的PSD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Sub-Band decomposition of Fluctuated signals for the Estimation of Power Spectra
The noise spectroscopy is used to determinate quality and reliability of semiconductor materials. We have used the means of time-frequency analysis for processing of long time duration stochastic signal. Tree-structured FIR filter bank implemented in a recursive way for octave dividing frequency band was designed as full parallel computational algorithm for power spectral density estimation. In the very low frequency area we will obtain high resolution and low level variance of PSD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent Developments in All-Optical Nonlinear Signal Processing for Fiber-Optic Communications Robust Ultrasonic Spread-Spectrum Positioning System using a AoA/ToA Method Distributed perception for a group of legged robots Advanced Multisensorial Barrier for Obstacle Detection Visual Model Feature Tracking For UAV Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1