从半结构化数据中提取分区统计信息

John N. Wilson, R. Gourlay, Robert Japp, M. Neumüller
{"title":"从半结构化数据中提取分区统计信息","authors":"John N. Wilson, R. Gourlay, Robert Japp, M. Neumüller","doi":"10.1109/DEXA.2006.59","DOIUrl":null,"url":null,"abstract":"The effective grouping, or partitioning, of semistructured data is of fundamental importance when providing support for queries. Partitions allow items within the data set that share common structural properties to be identified efficiently. This allows queries that make use of these properties, such as branching path expressions, to be accelerated. Here, we evaluate the effectiveness of several partitioning techniques by establishing the number of partitions that each scheme can identify over a given data set. In particular, we explore the use of parameterised indexes, based upon the notion of forward and backward bisimilarity, as a means of partitioning semistructured data; demonstrating that even restricted instances of such indexes can be used to identify the majority of relevant partitions in the data","PeriodicalId":282986,"journal":{"name":"17th International Workshop on Database and Expert Systems Applications (DEXA'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Extracting Partition Statistics from Semistructured Data\",\"authors\":\"John N. Wilson, R. Gourlay, Robert Japp, M. Neumüller\",\"doi\":\"10.1109/DEXA.2006.59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effective grouping, or partitioning, of semistructured data is of fundamental importance when providing support for queries. Partitions allow items within the data set that share common structural properties to be identified efficiently. This allows queries that make use of these properties, such as branching path expressions, to be accelerated. Here, we evaluate the effectiveness of several partitioning techniques by establishing the number of partitions that each scheme can identify over a given data set. In particular, we explore the use of parameterised indexes, based upon the notion of forward and backward bisimilarity, as a means of partitioning semistructured data; demonstrating that even restricted instances of such indexes can be used to identify the majority of relevant partitions in the data\",\"PeriodicalId\":282986,\"journal\":{\"name\":\"17th International Workshop on Database and Expert Systems Applications (DEXA'06)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"17th International Workshop on Database and Expert Systems Applications (DEXA'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEXA.2006.59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th International Workshop on Database and Expert Systems Applications (DEXA'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.2006.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在为查询提供支持时,对半结构化数据进行有效分组或分区是非常重要的。分区允许有效地识别数据集中共享公共结构属性的项。这允许使用这些属性(如分支路径表达式)的查询得到加速。在这里,我们通过建立每个方案在给定数据集上可以识别的分区数量来评估几种分区技术的有效性。特别地,我们探索了参数化索引的使用,基于向前和向后双相似性的概念,作为半结构化数据分区的一种手段;说明即使是这些索引的受限实例也可以用来标识数据中的大多数相关分区
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extracting Partition Statistics from Semistructured Data
The effective grouping, or partitioning, of semistructured data is of fundamental importance when providing support for queries. Partitions allow items within the data set that share common structural properties to be identified efficiently. This allows queries that make use of these properties, such as branching path expressions, to be accelerated. Here, we evaluate the effectiveness of several partitioning techniques by establishing the number of partitions that each scheme can identify over a given data set. In particular, we explore the use of parameterised indexes, based upon the notion of forward and backward bisimilarity, as a means of partitioning semistructured data; demonstrating that even restricted instances of such indexes can be used to identify the majority of relevant partitions in the data
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visualization and Bayesian Nets to link Business Aims Interaction Styles for Service Discovery in Mobile Business Applications Service and Resource Discovery Using P2P An Integrity Semantics for Open World Databases Requirements on the Use of Goal-Directed Imitation for Self-Adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1