基于词共现模型的微博热点话题检测

Long Cao, Xin Chen, Yuqing Zhang, Donghui Li
{"title":"基于词共现模型的微博热点话题检测","authors":"Long Cao, Xin Chen, Yuqing Zhang, Donghui Li","doi":"10.1109/ComComAp.2014.7017187","DOIUrl":null,"url":null,"abstract":"Micro-blogging services are used by millions of people around the world to get information and express their opinions. Detecting hot topics from Chinese micro-bloggings has vast importance to discovering rumors and guiding public opinion. In order to solve the problem of massive pieces of information on micro-bloggings platform and the feature of micro-bloggins content such as short text, in this paper a model is put forward to detect hot topics from Chinese micro-bloggings based on word co-occurrence model. The experimental results show the model can efficiently detect hot topics from Chinese micro-bloggings.","PeriodicalId":422906,"journal":{"name":"2014 IEEE Computers, Communications and IT Applications Conference","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hot topics detected from micro-bloggings based on word co-occurrence model\",\"authors\":\"Long Cao, Xin Chen, Yuqing Zhang, Donghui Li\",\"doi\":\"10.1109/ComComAp.2014.7017187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micro-blogging services are used by millions of people around the world to get information and express their opinions. Detecting hot topics from Chinese micro-bloggings has vast importance to discovering rumors and guiding public opinion. In order to solve the problem of massive pieces of information on micro-bloggings platform and the feature of micro-bloggins content such as short text, in this paper a model is put forward to detect hot topics from Chinese micro-bloggings based on word co-occurrence model. The experimental results show the model can efficiently detect hot topics from Chinese micro-bloggings.\",\"PeriodicalId\":422906,\"journal\":{\"name\":\"2014 IEEE Computers, Communications and IT Applications Conference\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Computers, Communications and IT Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ComComAp.2014.7017187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Computers, Communications and IT Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ComComAp.2014.7017187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微博服务被世界各地数以百万计的人用来获取信息和表达意见。从中国的微博中发现热点话题对于发现谣言和引导舆论有着巨大的重要性。为了解决微博平台信息量大的问题和微博内容文本短的特点,本文提出了一种基于词共现模型的中文微博热点话题检测模型。实验结果表明,该模型能够有效地检测中文微博中的热点话题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hot topics detected from micro-bloggings based on word co-occurrence model
Micro-blogging services are used by millions of people around the world to get information and express their opinions. Detecting hot topics from Chinese micro-bloggings has vast importance to discovering rumors and guiding public opinion. In order to solve the problem of massive pieces of information on micro-bloggings platform and the feature of micro-bloggins content such as short text, in this paper a model is put forward to detect hot topics from Chinese micro-bloggings based on word co-occurrence model. The experimental results show the model can efficiently detect hot topics from Chinese micro-bloggings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast acquisition method of navigation receiver based on folded PMF-FFT Web service sub-chain recommendation leveraging graph searching Path prediction based on second-order Markov chain for the opportunistic networks A novel UEP resource allocation scheme for layered source transmission in COFDM systems Energy efficient scheduling with probability and task migration considerations for soft real-time systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1