PICEA-g采用增强型适应度分配方法

Zhichao Shi, Rui Wang, Zhang Tao
{"title":"PICEA-g采用增强型适应度分配方法","authors":"Zhichao Shi, Rui Wang, Zhang Tao","doi":"10.1109/MCDM.2014.7007190","DOIUrl":null,"url":null,"abstract":"The preference-inspired co-evolutionary algorithm using goal vectors (PICEA-g) has been demonstrated to perform well on multi-objective problems. The superiority of PICEA-g originates from the smart fitness assignment, that is, candidate solutions are co-evolved with goal vectors along the search. In this study, we identify a limitation of this fitness assignment method, and propose an enhanced fitness assignment method which considers both the performance of goal vectors and the Pareto dominance rank on the fitness calculation of candidate solutions. Experimental results show that PICEA-g with the enhanced approach is effective, especially for bi-objective problems.","PeriodicalId":335170,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"PICEA-g using an enhanced fitness assignment method\",\"authors\":\"Zhichao Shi, Rui Wang, Zhang Tao\",\"doi\":\"10.1109/MCDM.2014.7007190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The preference-inspired co-evolutionary algorithm using goal vectors (PICEA-g) has been demonstrated to perform well on multi-objective problems. The superiority of PICEA-g originates from the smart fitness assignment, that is, candidate solutions are co-evolved with goal vectors along the search. In this study, we identify a limitation of this fitness assignment method, and propose an enhanced fitness assignment method which considers both the performance of goal vectors and the Pareto dominance rank on the fitness calculation of candidate solutions. Experimental results show that PICEA-g with the enhanced approach is effective, especially for bi-objective problems.\",\"PeriodicalId\":335170,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCDM.2014.7007190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCDM.2014.7007190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

基于目标向量的偏好启发协同进化算法(PICEA-g)已被证明在多目标问题上表现良好。PICEA-g算法的优势在于智能适应度分配,即候选解与目标向量在搜索过程中协同进化。在本研究中,我们发现了这种适应度分配方法的局限性,并提出了一种增强的适应度分配方法,该方法同时考虑了目标向量的性能和Pareto优势秩对候选解适应度计算的影响。实验结果表明,采用改进方法的PICEA-g是有效的,特别是对于双目标问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PICEA-g using an enhanced fitness assignment method
The preference-inspired co-evolutionary algorithm using goal vectors (PICEA-g) has been demonstrated to perform well on multi-objective problems. The superiority of PICEA-g originates from the smart fitness assignment, that is, candidate solutions are co-evolved with goal vectors along the search. In this study, we identify a limitation of this fitness assignment method, and propose an enhanced fitness assignment method which considers both the performance of goal vectors and the Pareto dominance rank on the fitness calculation of candidate solutions. Experimental results show that PICEA-g with the enhanced approach is effective, especially for bi-objective problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An extended bilevel programming model and its kth-best algorithm for dynamic decision making in emergency situations A bottom-up implementation of Path-Relinking for Phylogenetic reconstruction applied to Maximum Parsimony Visualization and classification of protein secondary structures using Self-Organizing Maps Gene interaction networks boost genetic algorithm performance in biomarker discovery Partially Optimized Cyclic Shift Crossover for Multi-Objective Genetic Algorithms for the multi-objective Vehicle Routing Problem with time-windows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1