{"title":"基于机器学习的乌尔都语网络欺凌检测","authors":"Sara Khan, Amna Qureshi","doi":"10.1109/ETECTE55893.2022.10007379","DOIUrl":null,"url":null,"abstract":"Cyberbullying has become a significant problem with the surge in the use of social media. The most basic way to prevent cyberbullying on these social media platforms is to identify and remove offensive comments. However, it is hard for humans to read and remove all the comments manually. Current research work focuses on using machine learning to detect and eliminate cyberbullying. Although most of the work has been conducted on English texts to detect cyberbullying, limited to no work can be found in Urdu. This paper aims to detect cyberbullying from the users' comments posted in Urdu on Twitter using machine learning and Natural Language Processing (NLP) techniques. To the best of our knowledge, cyberbullying detection on Urdu text comments has not been performed due to the lack of a publicly available standard Urdu dataset. In this paper, we created a dataset of offensive user-generated Urdu comments from Twitter. The comments in the dataset are classified into five categories. n-gram techniques are used to extract features at character and word levels. Various supervised machine-learning techniques are applied to the dataset to detect cyberbullying. Evaluation metrics such as precision, recall, accuracy and F1 scores are used to analyse the performance of machine learning techniques.","PeriodicalId":131572,"journal":{"name":"2022 International Conference on Emerging Trends in Electrical, Control, and Telecommunication Engineering (ETECTE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyberbullying Detection in Urdu Language Using Machine Learning\",\"authors\":\"Sara Khan, Amna Qureshi\",\"doi\":\"10.1109/ETECTE55893.2022.10007379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyberbullying has become a significant problem with the surge in the use of social media. The most basic way to prevent cyberbullying on these social media platforms is to identify and remove offensive comments. However, it is hard for humans to read and remove all the comments manually. Current research work focuses on using machine learning to detect and eliminate cyberbullying. Although most of the work has been conducted on English texts to detect cyberbullying, limited to no work can be found in Urdu. This paper aims to detect cyberbullying from the users' comments posted in Urdu on Twitter using machine learning and Natural Language Processing (NLP) techniques. To the best of our knowledge, cyberbullying detection on Urdu text comments has not been performed due to the lack of a publicly available standard Urdu dataset. In this paper, we created a dataset of offensive user-generated Urdu comments from Twitter. The comments in the dataset are classified into five categories. n-gram techniques are used to extract features at character and word levels. Various supervised machine-learning techniques are applied to the dataset to detect cyberbullying. Evaluation metrics such as precision, recall, accuracy and F1 scores are used to analyse the performance of machine learning techniques.\",\"PeriodicalId\":131572,\"journal\":{\"name\":\"2022 International Conference on Emerging Trends in Electrical, Control, and Telecommunication Engineering (ETECTE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Emerging Trends in Electrical, Control, and Telecommunication Engineering (ETECTE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETECTE55893.2022.10007379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Emerging Trends in Electrical, Control, and Telecommunication Engineering (ETECTE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETECTE55893.2022.10007379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着社交媒体使用的激增,网络欺凌已成为一个重大问题。防止这些社交媒体平台上的网络欺凌最基本的方法是识别和删除攻击性评论。然而,人类很难手动阅读和删除所有评论。目前的研究工作集中在使用机器学习来检测和消除网络欺凌。虽然大部分工作都是在英语文本上进行的,以检测网络欺凌,但乌尔都语的工作几乎没有。本文旨在利用机器学习和自然语言处理(NLP)技术,从Twitter上乌尔都语用户的评论中检测网络欺凌。据我们所知,由于缺乏公开可用的标准乌尔都语数据集,还没有对乌尔都语文本评论进行网络欺凌检测。在本文中,我们创建了一个来自Twitter的攻击性乌尔都语评论数据集。数据集中的评论分为五类。N-gram技术用于提取字符和单词级别的特征。各种监督机器学习技术被应用于数据集以检测网络欺凌。诸如精度、召回率、准确性和F1分数等评估指标用于分析机器学习技术的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cyberbullying Detection in Urdu Language Using Machine Learning
Cyberbullying has become a significant problem with the surge in the use of social media. The most basic way to prevent cyberbullying on these social media platforms is to identify and remove offensive comments. However, it is hard for humans to read and remove all the comments manually. Current research work focuses on using machine learning to detect and eliminate cyberbullying. Although most of the work has been conducted on English texts to detect cyberbullying, limited to no work can be found in Urdu. This paper aims to detect cyberbullying from the users' comments posted in Urdu on Twitter using machine learning and Natural Language Processing (NLP) techniques. To the best of our knowledge, cyberbullying detection on Urdu text comments has not been performed due to the lack of a publicly available standard Urdu dataset. In this paper, we created a dataset of offensive user-generated Urdu comments from Twitter. The comments in the dataset are classified into five categories. n-gram techniques are used to extract features at character and word levels. Various supervised machine-learning techniques are applied to the dataset to detect cyberbullying. Evaluation metrics such as precision, recall, accuracy and F1 scores are used to analyse the performance of machine learning techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embedded Hash Codes for Image Similarity Detection and Tamper Proofing Outliers Detection and Repairing Technique for Measurement Data in the Distribution System 5th order Modeling, Control and Steady-State Validation of Wind Turbine Based on DFIG Propagation Channel Characterization of 28 GHz and 36 GHz Millimeter-Waves for 5G Cellular Networks Autonomous Vehicle Health Monitoring Based on Cloud-Fog Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1