{"title":"用蒙特卡洛方法预测冷冻食品的销售系统","authors":"Eka Larasati Amalia, Yoppy Yunhasnawa, Anindya Refrina Rahmatanti","doi":"10.24002/jbi.v13i02.6496","DOIUrl":null,"url":null,"abstract":"Abstract. Frozen Food Sales Prediction System Case Study of Supermama Frozen Food Using the Monte Carlo Method. Frozen processed food is increasingly popular, so frozen food stores are getting easy to find. Supermama Frozen Food is a store that sells a variety of frozen foods. Not all frozen food stocks can get sold out before their expiration dates. This causes the store's profits to decrease. Therefore, a frozen food sales prediction system was necessarily made to help the store estimate its stock to minimise store losses. The research method used in predicting sales was the Monte Carlo method. Testing methods used were accuracy and MAPE. The test results of using accuracy were 89.66%, and MAPE error accuracy test showed 12.6%. Based on the results, it is concluded that the Monte Carlo method can predict frozen food sales.Keywords: forecasting, frozen food, Monte Carlo, sales prediction\nAbstrak. Makanan yang diolah dengan cara dibekukan semakin digemari masyarakat sehingga toko makanan beku menjadi mudah ditemui. Supermama Frozen Food merupakan salah satu toko yang menjual aneka makanan beku. Tidak semua stok makanan beku terjual habis hingga masa konsumsi berakhir. Hal tersebut membuat keuntungan toko menurun. Oleh karena itu di buatlah sistem prediksi penjualan makanan beku yang dapat mengestimasi stok sehingga meminimalisir kerugian toko. Metode yang digunakan dalam memprediksi penjualan yaitu metode Monte Carlo. Pengujian metode yang digunakan yaitu akurasi dan MAPE. Hasil pengujian menggunakan akurasi ialah 89.66% dan pengujian akurasi error MAPE menghasilkan nilai 12.6%. Berdasar hasil pengujian metode tersebu, metode Monte Carlo disimpulkan dapat digunakan dalam prediksi penjualan frozen food.Kata Kunci: forecasting, frozen food, Monte Carlo, prediksi penjualan.","PeriodicalId":381749,"journal":{"name":"Jurnal Buana Informatika","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sistem Prediksi Penjualan Frozen Food dengan Metode Monte Carlo (Studi Kasus: Supermama Frozen Food)\",\"authors\":\"Eka Larasati Amalia, Yoppy Yunhasnawa, Anindya Refrina Rahmatanti\",\"doi\":\"10.24002/jbi.v13i02.6496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Frozen Food Sales Prediction System Case Study of Supermama Frozen Food Using the Monte Carlo Method. Frozen processed food is increasingly popular, so frozen food stores are getting easy to find. Supermama Frozen Food is a store that sells a variety of frozen foods. Not all frozen food stocks can get sold out before their expiration dates. This causes the store's profits to decrease. Therefore, a frozen food sales prediction system was necessarily made to help the store estimate its stock to minimise store losses. The research method used in predicting sales was the Monte Carlo method. Testing methods used were accuracy and MAPE. The test results of using accuracy were 89.66%, and MAPE error accuracy test showed 12.6%. Based on the results, it is concluded that the Monte Carlo method can predict frozen food sales.Keywords: forecasting, frozen food, Monte Carlo, sales prediction\\nAbstrak. Makanan yang diolah dengan cara dibekukan semakin digemari masyarakat sehingga toko makanan beku menjadi mudah ditemui. Supermama Frozen Food merupakan salah satu toko yang menjual aneka makanan beku. Tidak semua stok makanan beku terjual habis hingga masa konsumsi berakhir. Hal tersebut membuat keuntungan toko menurun. Oleh karena itu di buatlah sistem prediksi penjualan makanan beku yang dapat mengestimasi stok sehingga meminimalisir kerugian toko. Metode yang digunakan dalam memprediksi penjualan yaitu metode Monte Carlo. Pengujian metode yang digunakan yaitu akurasi dan MAPE. Hasil pengujian menggunakan akurasi ialah 89.66% dan pengujian akurasi error MAPE menghasilkan nilai 12.6%. Berdasar hasil pengujian metode tersebu, metode Monte Carlo disimpulkan dapat digunakan dalam prediksi penjualan frozen food.Kata Kunci: forecasting, frozen food, Monte Carlo, prediksi penjualan.\",\"PeriodicalId\":381749,\"journal\":{\"name\":\"Jurnal Buana Informatika\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Buana Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24002/jbi.v13i02.6496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Buana Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24002/jbi.v13i02.6496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
摘要冷冻食品销售预测系统——以蒙特卡罗方法在Supermama冷冻食品销售预测中的应用为例。冷冻加工食品越来越受欢迎,所以冷冻食品店越来越容易找到。Supermama Frozen Food是一家出售各种冷冻食品的商店。并不是所有的冷冻食品都能在保质期前卖光。这导致商店的利润减少。因此,有必要建立一个冷冻食品销售预测系统来帮助商店估计其库存,以尽量减少商店损失。用于预测销售的研究方法是蒙特卡罗方法。检测方法为准确性和MAPE。使用准确度测试结果为89.66%,MAPE误差准确度测试结果为12.6%。结果表明,蒙特卡罗方法可以预测冷冻食品的销售情况。关键词:预测,冷冻食品,蒙特卡罗,销售预测Makanan yang diolah dengan cara dibekukan semakin digemarakat masyarakat sehinga toko Makanan beku menjadi mudah ditemui。超级妈妈冷冻食品merupakan salah satu toko yang menjual aneka makanan beku。在这里,我想说的是,在这里我想说的是,在这里我想说的是:我想说的是,我的朋友们都很高兴。Oleh karena itu di buatlah system prediksi penjualan makanan beku yang dapat mengestimasi stock sehinga minimaliisir kerugian toko。蒙特卡罗蒙特卡罗蒙特卡罗。企鹅的方法是杨地古纳坎亚图阿库拉斯丹MAPE。哈西尔企鹅蒙古纳坎阿库拉西拉89.66%,但企鹅阿库拉西误差MAPE蒙古纳坎尼拉12.6%。用蒙特卡罗方法,用企鹅速冻食品。卡塔昆奇:预测,冷冻食品,蒙特卡洛,预测。
Sistem Prediksi Penjualan Frozen Food dengan Metode Monte Carlo (Studi Kasus: Supermama Frozen Food)
Abstract. Frozen Food Sales Prediction System Case Study of Supermama Frozen Food Using the Monte Carlo Method. Frozen processed food is increasingly popular, so frozen food stores are getting easy to find. Supermama Frozen Food is a store that sells a variety of frozen foods. Not all frozen food stocks can get sold out before their expiration dates. This causes the store's profits to decrease. Therefore, a frozen food sales prediction system was necessarily made to help the store estimate its stock to minimise store losses. The research method used in predicting sales was the Monte Carlo method. Testing methods used were accuracy and MAPE. The test results of using accuracy were 89.66%, and MAPE error accuracy test showed 12.6%. Based on the results, it is concluded that the Monte Carlo method can predict frozen food sales.Keywords: forecasting, frozen food, Monte Carlo, sales prediction
Abstrak. Makanan yang diolah dengan cara dibekukan semakin digemari masyarakat sehingga toko makanan beku menjadi mudah ditemui. Supermama Frozen Food merupakan salah satu toko yang menjual aneka makanan beku. Tidak semua stok makanan beku terjual habis hingga masa konsumsi berakhir. Hal tersebut membuat keuntungan toko menurun. Oleh karena itu di buatlah sistem prediksi penjualan makanan beku yang dapat mengestimasi stok sehingga meminimalisir kerugian toko. Metode yang digunakan dalam memprediksi penjualan yaitu metode Monte Carlo. Pengujian metode yang digunakan yaitu akurasi dan MAPE. Hasil pengujian menggunakan akurasi ialah 89.66% dan pengujian akurasi error MAPE menghasilkan nilai 12.6%. Berdasar hasil pengujian metode tersebu, metode Monte Carlo disimpulkan dapat digunakan dalam prediksi penjualan frozen food.Kata Kunci: forecasting, frozen food, Monte Carlo, prediksi penjualan.