预测电视情景喜剧对话中的幽默反应

D. Bertero, Pascale Fung
{"title":"预测电视情景喜剧对话中的幽默反应","authors":"D. Bertero, Pascale Fung","doi":"10.1109/ICASSP.2016.7472785","DOIUrl":null,"url":null,"abstract":"We propose a method to predict humor response in dialog using acoustic and language features. We use data from two popular TV sitcoms - \"The Big Bang Theory\" and \"Seinfeld\" - to predict how the audience responds to humor. Due to the sequentiality of humor response in dialogues we use a Conditional Random Field as classifier/predictor. Our method is relatively effective, with a maximum precision obtained of 72.1% in \"Big Bang\" and 60.2% in \"Seinfeld\". Experiments show that audio, speed, word and sentence length features are the most effective. This work is applicable to develop appropriate machine response empathetic to emotion in dialog, in addition to humor.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1962 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Predicting humor response in dialogues from TV sitcoms\",\"authors\":\"D. Bertero, Pascale Fung\",\"doi\":\"10.1109/ICASSP.2016.7472785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method to predict humor response in dialog using acoustic and language features. We use data from two popular TV sitcoms - \\\"The Big Bang Theory\\\" and \\\"Seinfeld\\\" - to predict how the audience responds to humor. Due to the sequentiality of humor response in dialogues we use a Conditional Random Field as classifier/predictor. Our method is relatively effective, with a maximum precision obtained of 72.1% in \\\"Big Bang\\\" and 60.2% in \\\"Seinfeld\\\". Experiments show that audio, speed, word and sentence length features are the most effective. This work is applicable to develop appropriate machine response empathetic to emotion in dialog, in addition to humor.\",\"PeriodicalId\":165321,\"journal\":{\"name\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"1962 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2016.7472785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

我们提出了一种利用声学和语言特征来预测对话中的幽默反应的方法。我们使用两部流行情景喜剧《生活大爆炸》和《宋飞正传》的数据来预测观众对幽默的反应。由于幽默反应在对话中的顺序性,我们使用条件随机场作为分类器/预测器。我们的方法是比较有效的,在《生活大爆炸》和《宋飞正传》中获得的最大精度分别为72.1%和60.2%。实验表明,音频、速度、单词和句子长度特征是最有效的。这项工作适用于开发适当的机器反应感同身受的情感对话,除了幽默。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting humor response in dialogues from TV sitcoms
We propose a method to predict humor response in dialog using acoustic and language features. We use data from two popular TV sitcoms - "The Big Bang Theory" and "Seinfeld" - to predict how the audience responds to humor. Due to the sequentiality of humor response in dialogues we use a Conditional Random Field as classifier/predictor. Our method is relatively effective, with a maximum precision obtained of 72.1% in "Big Bang" and 60.2% in "Seinfeld". Experiments show that audio, speed, word and sentence length features are the most effective. This work is applicable to develop appropriate machine response empathetic to emotion in dialog, in addition to humor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-stabilized deep neural network An acoustic keystroke transient canceler for speech communication terminals using a semi-blind adaptive filter model Data sketching for large-scale Kalman filtering Improved decoding of analog modulo block codes for noise mitigation An expectation-maximization eigenvector clustering approach to direction of arrival estimation of multiple speech sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1