视觉上无损的屏幕内容编码使用HEVC基础层

Geert Braeckman, Shahid M. Satti, Heng Chen, A. Munteanu, P. Schelkens
{"title":"视觉上无损的屏幕内容编码使用HEVC基础层","authors":"Geert Braeckman, Shahid M. Satti, Heng Chen, A. Munteanu, P. Schelkens","doi":"10.1109/VCIP.2013.6706364","DOIUrl":null,"url":null,"abstract":"This paper presents a novel two-layer coding framework targeting visually lossless compression of screen content video. The proposed framework employs the conventional HEVC standard for the base-layer. For the enhancement layer, a hybrid of spatial and temporal block-prediction mechanism is introduced to guarantee a small energy of the error-residual. Spatial prediction is generally chosen for dynamic areas, while temporal predictions yield better prediction for static areas in a video frame. The prediction residual is quantized based on whether a given block is static or dynamic. Run-length coding, Golomb based binarization and context-based arithmetic coding are employed to efficiently code the quantized residual and form the enhancement-layer. Performance evaluations using 4:4:4 screen content sequences show that, for visually lossless video quality, the proposed system significantly saves the bit-rate compared to the two-layer lossless HEVC framework.","PeriodicalId":407080,"journal":{"name":"2013 Visual Communications and Image Processing (VCIP)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Visually lossless screen content coding using HEVC base-layer\",\"authors\":\"Geert Braeckman, Shahid M. Satti, Heng Chen, A. Munteanu, P. Schelkens\",\"doi\":\"10.1109/VCIP.2013.6706364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel two-layer coding framework targeting visually lossless compression of screen content video. The proposed framework employs the conventional HEVC standard for the base-layer. For the enhancement layer, a hybrid of spatial and temporal block-prediction mechanism is introduced to guarantee a small energy of the error-residual. Spatial prediction is generally chosen for dynamic areas, while temporal predictions yield better prediction for static areas in a video frame. The prediction residual is quantized based on whether a given block is static or dynamic. Run-length coding, Golomb based binarization and context-based arithmetic coding are employed to efficiently code the quantized residual and form the enhancement-layer. Performance evaluations using 4:4:4 screen content sequences show that, for visually lossless video quality, the proposed system significantly saves the bit-rate compared to the two-layer lossless HEVC framework.\",\"PeriodicalId\":407080,\"journal\":{\"name\":\"2013 Visual Communications and Image Processing (VCIP)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP.2013.6706364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2013.6706364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对屏幕内容视频的视觉无损压缩,提出了一种新的两层编码框架。该框架采用传统的HEVC标准作为基础层。在增强层,引入了时空混合块预测机制,保证了误差残差能量小。空间预测通常用于动态区域,而时间预测可以更好地预测视频帧中的静态区域。根据给定块是静态的还是动态的,对预测残差进行量化。采用行距编码、基于Golomb的二值化和基于上下文的算术编码对量化残差进行有效编码,形成增强层。使用4:4:4屏幕内容序列进行的性能评估表明,对于视觉上无损的视频质量,与两层无损HEVC框架相比,所提出的系统显著节省了比特率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visually lossless screen content coding using HEVC base-layer
This paper presents a novel two-layer coding framework targeting visually lossless compression of screen content video. The proposed framework employs the conventional HEVC standard for the base-layer. For the enhancement layer, a hybrid of spatial and temporal block-prediction mechanism is introduced to guarantee a small energy of the error-residual. Spatial prediction is generally chosen for dynamic areas, while temporal predictions yield better prediction for static areas in a video frame. The prediction residual is quantized based on whether a given block is static or dynamic. Run-length coding, Golomb based binarization and context-based arithmetic coding are employed to efficiently code the quantized residual and form the enhancement-layer. Performance evaluations using 4:4:4 screen content sequences show that, for visually lossless video quality, the proposed system significantly saves the bit-rate compared to the two-layer lossless HEVC framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New motherwavelet for pattern detection in IR image Improved disparity vector derivation in 3D-HEVC Learning non-negative locality-constrained Linear Coding for human action recognition Wavelet based smoke detection method with RGB Contrast-image and shape constrain Joint image denoising using self-similarity based low-rank approximations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1