联想视觉结构中的传感器集成

F. Ancona, G. Parodi, R. Zunino
{"title":"联想视觉结构中的传感器集成","authors":"F. Ancona, G. Parodi, R. Zunino","doi":"10.5281/ZENODO.36051","DOIUrl":null,"url":null,"abstract":"The paper describes the use of associative models for integrating different sensors. Integrated associative structures are outlined and related to previous approaches; the enhanced robustness resulting from the integration of Associative Memories (AMs) and Neural Networks (NNs) is shown. Discussion then focuses on how different information sources can cooperate on associative visual recognition. Experimental results on real-image testbeds are reported, which confirm theoretical expectations.","PeriodicalId":282153,"journal":{"name":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensor integration in associative visual structures\",\"authors\":\"F. Ancona, G. Parodi, R. Zunino\",\"doi\":\"10.5281/ZENODO.36051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes the use of associative models for integrating different sensors. Integrated associative structures are outlined and related to previous approaches; the enhanced robustness resulting from the integration of Associative Memories (AMs) and Neural Networks (NNs) is shown. Discussion then focuses on how different information sources can cooperate on associative visual recognition. Experimental results on real-image testbeds are reported, which confirm theoretical expectations.\",\"PeriodicalId\":282153,\"journal\":{\"name\":\"1996 8th European Signal Processing Conference (EUSIPCO 1996)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1996 8th European Signal Processing Conference (EUSIPCO 1996)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.36051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.36051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了使用关联模型来集成不同的传感器。综合联想结构概述和相关的前面的方法;结合联想记忆(AMs)和神经网络(NNs)增强了鲁棒性。然后讨论了不同的信息源如何在联想视觉识别上进行合作。本文报道了实像试验台的实验结果,验证了理论预期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensor integration in associative visual structures
The paper describes the use of associative models for integrating different sensors. Integrated associative structures are outlined and related to previous approaches; the enhanced robustness resulting from the integration of Associative Memories (AMs) and Neural Networks (NNs) is shown. Discussion then focuses on how different information sources can cooperate on associative visual recognition. Experimental results on real-image testbeds are reported, which confirm theoretical expectations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PDF Not Yet Available In IEEE Xplore Parameter estimation of exponentially damped sinusoids using second order statistics A multivariable Steiglitz-McBride method On the approximation of nonbandlimited signals by nonuniform sampling series Model reduction by Kautz filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1