虚假新闻分类的社会感知多模态深度神经网络

Saed Rezayi, Saber Soleymani, H. Arabnia, Sheng Li
{"title":"虚假新闻分类的社会感知多模态深度神经网络","authors":"Saed Rezayi, Saber Soleymani, H. Arabnia, Sheng Li","doi":"10.1109/MIPR51284.2021.00048","DOIUrl":null,"url":null,"abstract":"The importance of fake news detection and classification on Online Social Networks (OSN) has recently increased and drawn attention. Training machine learning models for this task requires different types of attributes or modalities for the target OSN. Existing methods mainly rely on social media text, which carries rich semantic information and can roughly explain the discrepancy between normal and multiple fake news types. However, the structural characteristics of OSNs are overlooked. This paper aims to exploit such structural characteristics and further boost the fake news classification performance on OSN. Using deep neural networks, we build a novel multimodal classifier that incorporates relaying features, textual features, and network feature concatenated with each other in a late fusion manner. Experimental results on benchmark datasets demonstrate that our socially aware architecture outperforms existing models on fake news classification.","PeriodicalId":139543,"journal":{"name":"2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Socially Aware Multimodal Deep Neural Networks for Fake News Classification\",\"authors\":\"Saed Rezayi, Saber Soleymani, H. Arabnia, Sheng Li\",\"doi\":\"10.1109/MIPR51284.2021.00048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The importance of fake news detection and classification on Online Social Networks (OSN) has recently increased and drawn attention. Training machine learning models for this task requires different types of attributes or modalities for the target OSN. Existing methods mainly rely on social media text, which carries rich semantic information and can roughly explain the discrepancy between normal and multiple fake news types. However, the structural characteristics of OSNs are overlooked. This paper aims to exploit such structural characteristics and further boost the fake news classification performance on OSN. Using deep neural networks, we build a novel multimodal classifier that incorporates relaying features, textual features, and network feature concatenated with each other in a late fusion manner. Experimental results on benchmark datasets demonstrate that our socially aware architecture outperforms existing models on fake news classification.\",\"PeriodicalId\":139543,\"journal\":{\"name\":\"2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MIPR51284.2021.00048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR51284.2021.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

最近,在线社交网络(OSN)上的假新闻检测和分类的重要性日益增加,并引起了人们的关注。为此任务训练机器学习模型需要目标OSN的不同类型的属性或模态。现有的方法主要依赖于社交媒体文本,社交媒体文本承载着丰富的语义信息,可以大致解释正常新闻与多种假新闻类型之间的差异。然而,osn的结构特点却被忽视了。本文旨在利用这种结构特征,进一步提升OSN上的假新闻分类性能。利用深度神经网络,我们构建了一种新的多模态分类器,该分类器将中继特征、文本特征和网络特征以后期融合的方式相互连接。在基准数据集上的实验结果表明,我们的社会意识架构在假新闻分类上优于现有模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Socially Aware Multimodal Deep Neural Networks for Fake News Classification
The importance of fake news detection and classification on Online Social Networks (OSN) has recently increased and drawn attention. Training machine learning models for this task requires different types of attributes or modalities for the target OSN. Existing methods mainly rely on social media text, which carries rich semantic information and can roughly explain the discrepancy between normal and multiple fake news types. However, the structural characteristics of OSNs are overlooked. This paper aims to exploit such structural characteristics and further boost the fake news classification performance on OSN. Using deep neural networks, we build a novel multimodal classifier that incorporates relaying features, textual features, and network feature concatenated with each other in a late fusion manner. Experimental results on benchmark datasets demonstrate that our socially aware architecture outperforms existing models on fake news classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
XM2A: Multi-Scale Multi-Head Attention with Cross-Talk for Multi-Variate Time Series Analysis Demo Paper: Ad Hoc Search On Statistical Data Based On Categorization And Metadata Augmentation An Introduction to the JPEG Fake Media Initiative Augmented Tai-Chi Chuan Practice Tool with Pose Evaluation Exploring the Spatial-Visual Locality of Geo-tagged Urban Street Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1