{"title":"抽样的对抗鲁棒性","authors":"Omri Ben-Eliezer, E. Yogev","doi":"10.1145/3375395.3387643","DOIUrl":null,"url":null,"abstract":"Random sampling is a fundamental primitive in modern algorithms, statistics, and machine learning, used as a generic method to obtain a small yet \"representative\" subset of the data. In this work, we investigate the robustness of sampling against adaptive adversarial attacks in a streaming setting: An adversary sends a stream of elements from a universe U to a sampling algorithm (e.g., Bernoulli sampling or reservoir sampling), with the goal of making the sample \"very unrepresentative\" of the underlying data stream. The adversary is fully adaptive in the sense that it knows the exact content of the sample at any given point along the stream, and can choose which element to send next accordingly, in an online manner. Well-known results in the static setting indicate that if the full stream is chosen in advance (non-adaptively), then a random sample of size Ω(d/ε2) is an ε-approximation of the full data with good probability, where d is the VC-dimension of the underlying set system (U, R). Does this sample size suffice for robustness against an adaptive adversary? The simplistic answer is negative : We demonstrate a set system where a constant sample size (corresponding to a VC-dimension of 1) suffices in the static setting, yet an adaptive adversary can make the sample very unrepresentative, as long as the sample size is (strongly) sublinear in the stream length, using a simple and easy-to-implement attack. However, this attack is \"theoretical only\", requiring the set system size to (essentially) be exponential in the stream length. This is not a coincidence: We show that in order to make the sampling algorithm robust against adaptive adversaries, the modification required is solely to replace the VC-dimension term d in the sample size with the cardinality term log |R|. That is, the Bernoulli and reservoir sampling algorithms with sample size Ω(log |R|/ε2) output a representative sample of the stream with good probability, even in the presence of an adaptive adversary. This nearly matches the bound imposed by the attack.","PeriodicalId":412441,"journal":{"name":"Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"The Adversarial Robustness of Sampling\",\"authors\":\"Omri Ben-Eliezer, E. Yogev\",\"doi\":\"10.1145/3375395.3387643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Random sampling is a fundamental primitive in modern algorithms, statistics, and machine learning, used as a generic method to obtain a small yet \\\"representative\\\" subset of the data. In this work, we investigate the robustness of sampling against adaptive adversarial attacks in a streaming setting: An adversary sends a stream of elements from a universe U to a sampling algorithm (e.g., Bernoulli sampling or reservoir sampling), with the goal of making the sample \\\"very unrepresentative\\\" of the underlying data stream. The adversary is fully adaptive in the sense that it knows the exact content of the sample at any given point along the stream, and can choose which element to send next accordingly, in an online manner. Well-known results in the static setting indicate that if the full stream is chosen in advance (non-adaptively), then a random sample of size Ω(d/ε2) is an ε-approximation of the full data with good probability, where d is the VC-dimension of the underlying set system (U, R). Does this sample size suffice for robustness against an adaptive adversary? The simplistic answer is negative : We demonstrate a set system where a constant sample size (corresponding to a VC-dimension of 1) suffices in the static setting, yet an adaptive adversary can make the sample very unrepresentative, as long as the sample size is (strongly) sublinear in the stream length, using a simple and easy-to-implement attack. However, this attack is \\\"theoretical only\\\", requiring the set system size to (essentially) be exponential in the stream length. This is not a coincidence: We show that in order to make the sampling algorithm robust against adaptive adversaries, the modification required is solely to replace the VC-dimension term d in the sample size with the cardinality term log |R|. That is, the Bernoulli and reservoir sampling algorithms with sample size Ω(log |R|/ε2) output a representative sample of the stream with good probability, even in the presence of an adaptive adversary. This nearly matches the bound imposed by the attack.\",\"PeriodicalId\":412441,\"journal\":{\"name\":\"Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3375395.3387643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375395.3387643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

随机抽样是现代算法、统计学和机器学习中的基本基本要素,被用作获取数据的小而“代表性”子集的通用方法。在这项工作中,我们研究了在流设置中采样对自适应对抗性攻击的鲁棒性:攻击者将来自宇宙U的元素流发送到采样算法(例如,伯努利采样或储层采样),其目标是使样本“非常不具有代表性”底层数据流。对手是完全自适应的,因为它知道沿着流的任何给定点的样本的确切内容,并且可以以在线的方式相应地选择下一步发送哪个元素。静态设置中众所周知的结果表明,如果提前(非自适应)选择完整的流,那么大小为Ω(d/ε2)的随机样本是完整数据的ε-近似,具有良好的概率,其中d是底层集合系统(U, R)的vc维。这个样本大小是否足以满足对自适应对手的鲁棒性?简单的答案是否定的:我们演示了一个集合系统,其中恒定的样本量(对应于vc维为1)在静态设置中就足够了,但是自适应对手可以使样本非常不具有代表性,只要样本量在流长度中(强烈)是次线性的,使用简单且易于实现的攻击。然而,这种攻击是“理论上的”,要求设置的系统大小(本质上)是流长度的指数。这不是巧合:我们表明,为了使采样算法对自适应对手具有鲁棒性,所需的修改仅仅是将样本大小中的vc维项d替换为基数项log |R|。也就是说,样本大小为Ω(log |R|/ε2)的伯努利和储层采样算法即使在存在自适应对手的情况下,也能以良好的概率输出流的代表性样本。这几乎与攻击造成的边界一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Adversarial Robustness of Sampling
Random sampling is a fundamental primitive in modern algorithms, statistics, and machine learning, used as a generic method to obtain a small yet "representative" subset of the data. In this work, we investigate the robustness of sampling against adaptive adversarial attacks in a streaming setting: An adversary sends a stream of elements from a universe U to a sampling algorithm (e.g., Bernoulli sampling or reservoir sampling), with the goal of making the sample "very unrepresentative" of the underlying data stream. The adversary is fully adaptive in the sense that it knows the exact content of the sample at any given point along the stream, and can choose which element to send next accordingly, in an online manner. Well-known results in the static setting indicate that if the full stream is chosen in advance (non-adaptively), then a random sample of size Ω(d/ε2) is an ε-approximation of the full data with good probability, where d is the VC-dimension of the underlying set system (U, R). Does this sample size suffice for robustness against an adaptive adversary? The simplistic answer is negative : We demonstrate a set system where a constant sample size (corresponding to a VC-dimension of 1) suffices in the static setting, yet an adaptive adversary can make the sample very unrepresentative, as long as the sample size is (strongly) sublinear in the stream length, using a simple and easy-to-implement attack. However, this attack is "theoretical only", requiring the set system size to (essentially) be exponential in the stream length. This is not a coincidence: We show that in order to make the sampling algorithm robust against adaptive adversaries, the modification required is solely to replace the VC-dimension term d in the sample size with the cardinality term log |R|. That is, the Bernoulli and reservoir sampling algorithms with sample size Ω(log |R|/ε2) output a representative sample of the stream with good probability, even in the presence of an adaptive adversary. This nearly matches the bound imposed by the attack.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Probabilistic Databases for All Efficient Indexes for Diverse Top-k Range Queries Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems Parallel Algorithms for Sparse Matrix Multiplication and Join-Aggregate Queries Deciding Robustness for Lower SQL Isolation Levels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1