基于图像处理的人工神经网络在数字取证犯罪现场物体检测中的应用

Deepa Devasenapathy, M. Raja, R. K. Dwibedi, N. Vinoth, T. Jayasudha, V. D. Ganesh
{"title":"基于图像处理的人工神经网络在数字取证犯罪现场物体检测中的应用","authors":"Deepa Devasenapathy, M. Raja, R. K. Dwibedi, N. Vinoth, T. Jayasudha, V. D. Ganesh","doi":"10.1109/ICECAA58104.2023.10212302","DOIUrl":null,"url":null,"abstract":"Digital forensics science places a significant emphasis on the detection of objects as one of the most vital areas of study. Several industries and institutions may benefit from the object detection method, including those concerned with medical diagnostic scanning, traffic monitoring, airport security, law enforcement, and data rescue on a local and global scale. This study aims to detect weapons in video surveillance images by using various enhancement, segmentation, feature extraction, and classification methods by Artificial Neural Network to improve the detection accuracy. Yet, several mathematical and algorithmic models are computed to provide the appropriate approaches.","PeriodicalId":114624,"journal":{"name":"2023 2nd International Conference on Edge Computing and Applications (ICECAA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Neural Network using Image Processing for Digital Forensics Crime Scene Object Detection\",\"authors\":\"Deepa Devasenapathy, M. Raja, R. K. Dwibedi, N. Vinoth, T. Jayasudha, V. D. Ganesh\",\"doi\":\"10.1109/ICECAA58104.2023.10212302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital forensics science places a significant emphasis on the detection of objects as one of the most vital areas of study. Several industries and institutions may benefit from the object detection method, including those concerned with medical diagnostic scanning, traffic monitoring, airport security, law enforcement, and data rescue on a local and global scale. This study aims to detect weapons in video surveillance images by using various enhancement, segmentation, feature extraction, and classification methods by Artificial Neural Network to improve the detection accuracy. Yet, several mathematical and algorithmic models are computed to provide the appropriate approaches.\",\"PeriodicalId\":114624,\"journal\":{\"name\":\"2023 2nd International Conference on Edge Computing and Applications (ICECAA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 2nd International Conference on Edge Computing and Applications (ICECAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECAA58104.2023.10212302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Edge Computing and Applications (ICECAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECAA58104.2023.10212302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数字取证科学非常重视物体的检测,这是最重要的研究领域之一。一些行业和机构可能受益于目标检测方法,包括与医疗诊断扫描、交通监控、机场安全、执法以及本地和全球范围的数据救援有关的行业和机构。本研究旨在利用人工神经网络的各种增强、分割、特征提取、分类等方法,对视频监控图像中的武器进行检测,以提高检测精度。然而,计算了几个数学和算法模型来提供适当的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial Neural Network using Image Processing for Digital Forensics Crime Scene Object Detection
Digital forensics science places a significant emphasis on the detection of objects as one of the most vital areas of study. Several industries and institutions may benefit from the object detection method, including those concerned with medical diagnostic scanning, traffic monitoring, airport security, law enforcement, and data rescue on a local and global scale. This study aims to detect weapons in video surveillance images by using various enhancement, segmentation, feature extraction, and classification methods by Artificial Neural Network to improve the detection accuracy. Yet, several mathematical and algorithmic models are computed to provide the appropriate approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Learning based Sentiment Analysis on Images A Comprehensive Analysis on Unconstraint Video Analysis Using Deep Learning Approaches An Intelligent Parking Lot Management System Based on Real-Time License Plate Recognition BLIP-NLP Model for Sentiment Analysis Botnet Attack Detection in IoT Networks using CNN and LSTM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1