基于特征结构分配方法的参数识别动态过程鲁棒故障诊断

C. Fantuzzi, S. Simani, S. Beghelli
{"title":"基于特征结构分配方法的参数识别动态过程鲁棒故障诊断","authors":"C. Fantuzzi, S. Simani, S. Beghelli","doi":"10.1109/CDC.2001.980090","DOIUrl":null,"url":null,"abstract":"Presents some results concerning robust fault diagnosis of dynamic processes using a parametric identification technique. The first step of the considered approach estimates an equation error model by means of the input-output data acquired from the monitored system. In particular, the equation error term of the model takes into account disturbances, non-linear and time-variant terms, measurement errors, etc. The next step of the method requires a state-space realization of the input-output equation error model which allows us to define an equivalent disturbance distribution matrix related to the error term. Therefore, the eigenstructure assignment results for robust fault diagnosis can be successfully applied. The proposed procedure has been tested by means of a industrial process simulator. In such a manner, sensor, component and actuator faults can be simulated on an single shaft gas turbine. Results from this simulator are also reported.","PeriodicalId":131411,"journal":{"name":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Robust fault diagnosis of dynamic processes using parametric identification with eigenstructure assignment approach\",\"authors\":\"C. Fantuzzi, S. Simani, S. Beghelli\",\"doi\":\"10.1109/CDC.2001.980090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presents some results concerning robust fault diagnosis of dynamic processes using a parametric identification technique. The first step of the considered approach estimates an equation error model by means of the input-output data acquired from the monitored system. In particular, the equation error term of the model takes into account disturbances, non-linear and time-variant terms, measurement errors, etc. The next step of the method requires a state-space realization of the input-output equation error model which allows us to define an equivalent disturbance distribution matrix related to the error term. Therefore, the eigenstructure assignment results for robust fault diagnosis can be successfully applied. The proposed procedure has been tested by means of a industrial process simulator. In such a manner, sensor, component and actuator faults can be simulated on an single shaft gas turbine. Results from this simulator are also reported.\",\"PeriodicalId\":131411,\"journal\":{\"name\":\"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2001.980090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2001.980090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

给出了用参数识别技术进行动态过程鲁棒故障诊断的一些结果。所考虑的方法的第一步是利用从被监测系统获得的输入输出数据估计方程误差模型。特别是模型的方程误差项考虑了扰动、非线性时变项、测量误差等因素。该方法的下一步需要输入-输出方程误差模型的状态空间实现,该模型允许我们定义与误差项相关的等效扰动分布矩阵。因此,特征结构分配结果可以成功地用于鲁棒故障诊断。所提出的程序已通过工业过程模拟器进行了测试。通过这种方式,可以在单轴燃气轮机上模拟传感器、组件和执行器故障。本文还报告了仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust fault diagnosis of dynamic processes using parametric identification with eigenstructure assignment approach
Presents some results concerning robust fault diagnosis of dynamic processes using a parametric identification technique. The first step of the considered approach estimates an equation error model by means of the input-output data acquired from the monitored system. In particular, the equation error term of the model takes into account disturbances, non-linear and time-variant terms, measurement errors, etc. The next step of the method requires a state-space realization of the input-output equation error model which allows us to define an equivalent disturbance distribution matrix related to the error term. Therefore, the eigenstructure assignment results for robust fault diagnosis can be successfully applied. The proposed procedure has been tested by means of a industrial process simulator. In such a manner, sensor, component and actuator faults can be simulated on an single shaft gas turbine. Results from this simulator are also reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Linear symmetry of nonlinear systems On-line predictive techniques for "differentiated services" networks The Lie algebra structure of spin systems and their controllability properties Time-delayed chaos control with repetitive learning Robust nonlinear motion control of a helicopter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1