大风条件下车辆行驶安全的概率评估——两座跨海大桥原因调查

Hoki Kim, Hyeong-Yun Cheon, Sejin Kim
{"title":"大风条件下车辆行驶安全的概率评估——两座跨海大桥原因调查","authors":"Hoki Kim, Hyeong-Yun Cheon, Sejin Kim","doi":"10.2749/nanjing.2022.0028","DOIUrl":null,"url":null,"abstract":"The strong side winds threaten the stability of running vehicles over the sea-crossing bridges due to the high altitude of the deck and free exposure to the upcoming winds. Therefore, bridge operators control the speed limit or close the bridges when the wind speed reaches predetermined criteria. Since the sea-crossing bridges play an essential role in transportation networks, the traffic control strategy, including complete closure, requires a careful assessment of the critical wind speed at which vehicle instability can occur. As the aerodynamic forces on vehicles depend on several influence factors, including the geometrical shape of the superstructure, the critical wind speeds variate bridge by bridge. This study demonstrates a framework to determine the critical wind speed. This study reports two overturning accidents experienced in a double-deck suspension bridge and a cable-stayed bridge. By applying the proposed framework to the cases, the authors successfully explained the cause of accidents. For this investigation, the authors used a wind tunnel measurement of aerodynamic loads on vehicles and the vehicle dynamics to determine critical wind speed curves. The authors also extended the procedure to the probabilistic risk assessment by adding the long-term wind data analysis of the bridge site. In this way, this study provides a guideline for bridge operators on balancing the driving safety and the continuous mobility of the sea-crossing bridges under hazardous high wind conditions.","PeriodicalId":410450,"journal":{"name":"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Assessment of Vehicle Driving Safety under Strong Winds – Cause Investigations on Two Sea-Crossing Bridges\",\"authors\":\"Hoki Kim, Hyeong-Yun Cheon, Sejin Kim\",\"doi\":\"10.2749/nanjing.2022.0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The strong side winds threaten the stability of running vehicles over the sea-crossing bridges due to the high altitude of the deck and free exposure to the upcoming winds. Therefore, bridge operators control the speed limit or close the bridges when the wind speed reaches predetermined criteria. Since the sea-crossing bridges play an essential role in transportation networks, the traffic control strategy, including complete closure, requires a careful assessment of the critical wind speed at which vehicle instability can occur. As the aerodynamic forces on vehicles depend on several influence factors, including the geometrical shape of the superstructure, the critical wind speeds variate bridge by bridge. This study demonstrates a framework to determine the critical wind speed. This study reports two overturning accidents experienced in a double-deck suspension bridge and a cable-stayed bridge. By applying the proposed framework to the cases, the authors successfully explained the cause of accidents. For this investigation, the authors used a wind tunnel measurement of aerodynamic loads on vehicles and the vehicle dynamics to determine critical wind speed curves. The authors also extended the procedure to the probabilistic risk assessment by adding the long-term wind data analysis of the bridge site. In this way, this study provides a guideline for bridge operators on balancing the driving safety and the continuous mobility of the sea-crossing bridges under hazardous high wind conditions.\",\"PeriodicalId\":410450,\"journal\":{\"name\":\"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2749/nanjing.2022.0028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2749/nanjing.2022.0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于甲板的高度和即将到来的风的自由暴露,强大的侧风威胁着在跨海桥梁上运行的车辆的稳定性。因此,当风速达到预定标准时,桥梁运营商控制速度限制或关闭桥梁。由于跨海大桥在交通网络中起着至关重要的作用,交通控制策略,包括完全关闭,需要仔细评估可能发生车辆不稳定的临界风速。由于车辆所受的气动力取决于包括上部结构几何形状在内的多种影响因素,因此不同桥梁的临界风速不尽相同。本研究展示了一个确定临界风速的框架。本文报道了两座双层悬索桥和一座斜拉桥的倾覆事故。通过将提出的框架应用到案例中,作者成功地解释了事故的原因。在这项研究中,作者使用风洞测量车辆的空气动力载荷和车辆动力学来确定临界风速曲线。作者还通过增加桥址长期风数据分析,将程序扩展到概率风险评估。从而为跨海桥梁在危险大风条件下平衡行车安全和持续机动提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probabilistic Assessment of Vehicle Driving Safety under Strong Winds – Cause Investigations on Two Sea-Crossing Bridges
The strong side winds threaten the stability of running vehicles over the sea-crossing bridges due to the high altitude of the deck and free exposure to the upcoming winds. Therefore, bridge operators control the speed limit or close the bridges when the wind speed reaches predetermined criteria. Since the sea-crossing bridges play an essential role in transportation networks, the traffic control strategy, including complete closure, requires a careful assessment of the critical wind speed at which vehicle instability can occur. As the aerodynamic forces on vehicles depend on several influence factors, including the geometrical shape of the superstructure, the critical wind speeds variate bridge by bridge. This study demonstrates a framework to determine the critical wind speed. This study reports two overturning accidents experienced in a double-deck suspension bridge and a cable-stayed bridge. By applying the proposed framework to the cases, the authors successfully explained the cause of accidents. For this investigation, the authors used a wind tunnel measurement of aerodynamic loads on vehicles and the vehicle dynamics to determine critical wind speed curves. The authors also extended the procedure to the probabilistic risk assessment by adding the long-term wind data analysis of the bridge site. In this way, this study provides a guideline for bridge operators on balancing the driving safety and the continuous mobility of the sea-crossing bridges under hazardous high wind conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FE Modeling of the Interfacial Behaviour of Precast Multi-box Girder The Behavior of Long-span Suspended Footbridge Under Wind Load The Durability and SHM System of Hong Kong-Zhuhai-Macao Bridge Study on the Influence of Bridge Expansion Joints on Vehicle-Track- Bridge System Numerical Examination in Bridge Responses due to Fracture of Truss Member in a Steel Truss Bridge under Vehicle Loadings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1