四膜虫野生型和突变型细胞中潜在的粘液前体。

The Journal of protozoology Pub Date : 1991-11-01
Y Ding, A Ron, B H Satir
{"title":"四膜虫野生型和突变型细胞中潜在的粘液前体。","authors":"Y Ding,&nbsp;A Ron,&nbsp;B H Satir","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>By using an antibody to a specific mucus polypeptide (34 kDa) to study whole cell extracts of both a secretory mutant (SB281) and wild type (wt) Tetrahymena, we demonstrate that a 57-kDa polypeptide is a probable precursor to the 34-kDa secretory polypeptide. We postulate that the precursor accumulates in the mutant cells because it cannot be cleaved. This mutant contains no recognizable mature secretory granules (mucocysts). By immunoelectron microscopy, the 34-kDa polypeptide was localized in wt cells specifically to the mature mucocysts and to their released products. Localization in mutant cells occurred in two different types of cytoplasmic vesicles: small electron dense vesicles (0.3-0.5 microns in diameter) and large electron lucent vacuoles (1.2-3.5 microns in diameter). Immunoblot analyses of homogenates of mutant and wt cells with the anti-34-kDa serum revealed a dominant band in the mutant at Mr 57 kDa whereas the wt showed a dominant band only at Mr 34 kDa. Furthermore, the 57-kDa polypeptide is immunoprecipitated with anti-34-kDa serum from the mutant cell. Further evidence for a precursor relation of the 57-kDa polypeptide in mutant cells to the 34-kDa mucus polypeptide of wt cells was obtained by the use of drugs (monensin, chloroquine, NH4Cl) that block secretory product processing in wt cells. Extracts of drug-treated wt cells showed the presence of a 57-kDa cross reacting band even after 18 h of incubation in growth medium whereas untreated control cells contained the 34-kDa mature protein almost exclusively. These results indicate that processing of the precursor to the 34-kDa polypeptide occurs in an acidic compartment(s) possibly in either the trans Golgi network, or condensing vacuoles or both.</p>","PeriodicalId":22758,"journal":{"name":"The Journal of protozoology","volume":"38 6","pages":"613-23"},"PeriodicalIF":0.0000,"publicationDate":"1991-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A potential mucus precursor in Tetrahymena wild type and mutant cells.\",\"authors\":\"Y Ding,&nbsp;A Ron,&nbsp;B H Satir\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>By using an antibody to a specific mucus polypeptide (34 kDa) to study whole cell extracts of both a secretory mutant (SB281) and wild type (wt) Tetrahymena, we demonstrate that a 57-kDa polypeptide is a probable precursor to the 34-kDa secretory polypeptide. We postulate that the precursor accumulates in the mutant cells because it cannot be cleaved. This mutant contains no recognizable mature secretory granules (mucocysts). By immunoelectron microscopy, the 34-kDa polypeptide was localized in wt cells specifically to the mature mucocysts and to their released products. Localization in mutant cells occurred in two different types of cytoplasmic vesicles: small electron dense vesicles (0.3-0.5 microns in diameter) and large electron lucent vacuoles (1.2-3.5 microns in diameter). Immunoblot analyses of homogenates of mutant and wt cells with the anti-34-kDa serum revealed a dominant band in the mutant at Mr 57 kDa whereas the wt showed a dominant band only at Mr 34 kDa. Furthermore, the 57-kDa polypeptide is immunoprecipitated with anti-34-kDa serum from the mutant cell. Further evidence for a precursor relation of the 57-kDa polypeptide in mutant cells to the 34-kDa mucus polypeptide of wt cells was obtained by the use of drugs (monensin, chloroquine, NH4Cl) that block secretory product processing in wt cells. Extracts of drug-treated wt cells showed the presence of a 57-kDa cross reacting band even after 18 h of incubation in growth medium whereas untreated control cells contained the 34-kDa mature protein almost exclusively. These results indicate that processing of the precursor to the 34-kDa polypeptide occurs in an acidic compartment(s) possibly in either the trans Golgi network, or condensing vacuoles or both.</p>\",\"PeriodicalId\":22758,\"journal\":{\"name\":\"The Journal of protozoology\",\"volume\":\"38 6\",\"pages\":\"613-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of protozoology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of protozoology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过使用特异性粘液多肽(34 kDa)抗体来研究分泌型突变体(SB281)和野生型(wt)四膜虫的全细胞提取物,我们证明了57 kDa的多肽可能是34 kDa分泌多肽的前体。我们假设前体在突变细胞中积累是因为它不能被切割。该突变体不含可识别的成熟分泌颗粒(粘液囊肿)。通过免疫电镜观察,34-kDa多肽在wt细胞中特异性定位于成熟的黏液囊及其释放产物。突变细胞的定位发生在两种不同类型的细胞质泡中:小的电子密集泡(直径0.3-0.5微米)和大的电子明亮泡(直径1.2-3.5微米)。用抗34-kDa血清对突变体和wt细胞的匀浆进行免疫印迹分析,发现突变体在Mr为57 kDa处有优势条带,而wt细胞仅在Mr为34 kDa处有优势条带。此外,57-kDa多肽用来自突变细胞的抗34- kda血清免疫沉淀。通过使用阻断wt细胞分泌产物加工的药物(莫能菌素,氯喹,NH4Cl),获得了突变细胞中57-kDa多肽与wt细胞34-kDa粘液多肽的前体关系的进一步证据。药物处理的wt细胞提取物在生长培养基中孵育18小时后仍存在57 kda的交叉反应带,而未经处理的对照细胞几乎只含有34 kda的成熟蛋白。这些结果表明,34-kDa多肽前体的加工过程发生在酸性室中,可能是在反式高尔基网络中,也可能是在冷凝液泡中,或者两者兼而有之。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A potential mucus precursor in Tetrahymena wild type and mutant cells.

By using an antibody to a specific mucus polypeptide (34 kDa) to study whole cell extracts of both a secretory mutant (SB281) and wild type (wt) Tetrahymena, we demonstrate that a 57-kDa polypeptide is a probable precursor to the 34-kDa secretory polypeptide. We postulate that the precursor accumulates in the mutant cells because it cannot be cleaved. This mutant contains no recognizable mature secretory granules (mucocysts). By immunoelectron microscopy, the 34-kDa polypeptide was localized in wt cells specifically to the mature mucocysts and to their released products. Localization in mutant cells occurred in two different types of cytoplasmic vesicles: small electron dense vesicles (0.3-0.5 microns in diameter) and large electron lucent vacuoles (1.2-3.5 microns in diameter). Immunoblot analyses of homogenates of mutant and wt cells with the anti-34-kDa serum revealed a dominant band in the mutant at Mr 57 kDa whereas the wt showed a dominant band only at Mr 34 kDa. Furthermore, the 57-kDa polypeptide is immunoprecipitated with anti-34-kDa serum from the mutant cell. Further evidence for a precursor relation of the 57-kDa polypeptide in mutant cells to the 34-kDa mucus polypeptide of wt cells was obtained by the use of drugs (monensin, chloroquine, NH4Cl) that block secretory product processing in wt cells. Extracts of drug-treated wt cells showed the presence of a 57-kDa cross reacting band even after 18 h of incubation in growth medium whereas untreated control cells contained the 34-kDa mature protein almost exclusively. These results indicate that processing of the precursor to the 34-kDa polypeptide occurs in an acidic compartment(s) possibly in either the trans Golgi network, or condensing vacuoles or both.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proliferation patterns of latent Pneumocystis carinii in rat organs during progressive stages of immunosuppression. 7th European Conference on Cell and Molecular Biology of Ciliates. Toledo, Spain, September 2-6, 1991. Abstracts. The Society of Protozoologists. 1991 Abstracts. John O. Corliss--ciliatologist extraordinaire. Calcium transport and compartment analysis of free and exchangeable calcium in Plasmodium falciparum-infected red blood cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1