Prakhar Mishra, Chaitali Diwan, S. Srinivasa, G. Srinivasaraghavan
{"title":"使用预训练变压器模型的学习资源和路径的自动标题生成","authors":"Prakhar Mishra, Chaitali Diwan, S. Srinivasa, G. Srinivasaraghavan","doi":"10.1142/s1793351x21400134","DOIUrl":null,"url":null,"abstract":"To create curiosity and interest for a topic in online learning is a challenging task. A good preview that outlines the contents of a learning pathway could help learners know the topic and get interested in it. Towards this end, we propose a hierarchical title generation approach to generate semantically relevant titles for the learning resources in a learning pathway and a title for the pathway itself. Our approach to Automatic Title Generation for a given text is based on pre-trained Transformer Language Model GPT-2. A pool of candidate titles are generated and an appropriate title is selected among them which is then refined or de-noised to get the final title. The model is trained on research paper abstracts from arXiv and evaluated on three different test sets. We show that it generates semantically and syntactically relevant titles as reflected in ROUGE, BLEU scores and human evaluations. We propose an optional abstractive Summarizer module based on pre-trained Transformer model T5 to shorten medium length documents. This module is also trained and evaluated on research papers from arXiv dataset. Finally, we show that the proposed model of hierarchical title generation for learning pathways has promising results.","PeriodicalId":217956,"journal":{"name":"Int. J. Semantic Comput.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic Title Generation for Learning Resources and Pathways with Pre-trained Transformer Models\",\"authors\":\"Prakhar Mishra, Chaitali Diwan, S. Srinivasa, G. Srinivasaraghavan\",\"doi\":\"10.1142/s1793351x21400134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To create curiosity and interest for a topic in online learning is a challenging task. A good preview that outlines the contents of a learning pathway could help learners know the topic and get interested in it. Towards this end, we propose a hierarchical title generation approach to generate semantically relevant titles for the learning resources in a learning pathway and a title for the pathway itself. Our approach to Automatic Title Generation for a given text is based on pre-trained Transformer Language Model GPT-2. A pool of candidate titles are generated and an appropriate title is selected among them which is then refined or de-noised to get the final title. The model is trained on research paper abstracts from arXiv and evaluated on three different test sets. We show that it generates semantically and syntactically relevant titles as reflected in ROUGE, BLEU scores and human evaluations. We propose an optional abstractive Summarizer module based on pre-trained Transformer model T5 to shorten medium length documents. This module is also trained and evaluated on research papers from arXiv dataset. Finally, we show that the proposed model of hierarchical title generation for learning pathways has promising results.\",\"PeriodicalId\":217956,\"journal\":{\"name\":\"Int. J. Semantic Comput.\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Semantic Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793351x21400134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Semantic Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793351x21400134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic Title Generation for Learning Resources and Pathways with Pre-trained Transformer Models
To create curiosity and interest for a topic in online learning is a challenging task. A good preview that outlines the contents of a learning pathway could help learners know the topic and get interested in it. Towards this end, we propose a hierarchical title generation approach to generate semantically relevant titles for the learning resources in a learning pathway and a title for the pathway itself. Our approach to Automatic Title Generation for a given text is based on pre-trained Transformer Language Model GPT-2. A pool of candidate titles are generated and an appropriate title is selected among them which is then refined or de-noised to get the final title. The model is trained on research paper abstracts from arXiv and evaluated on three different test sets. We show that it generates semantically and syntactically relevant titles as reflected in ROUGE, BLEU scores and human evaluations. We propose an optional abstractive Summarizer module based on pre-trained Transformer model T5 to shorten medium length documents. This module is also trained and evaluated on research papers from arXiv dataset. Finally, we show that the proposed model of hierarchical title generation for learning pathways has promising results.