点云的Wasserstein等距嵌入学习

Keisuke Kawano, Satoshi Koide, Takuro Kutsuna
{"title":"点云的Wasserstein等距嵌入学习","authors":"Keisuke Kawano, Satoshi Koide, Takuro Kutsuna","doi":"10.1109/3DV50981.2020.00057","DOIUrl":null,"url":null,"abstract":"The Wasserstein distance has been employed for determining the distance between point clouds, which have variable numbers of points and invariance of point order. However, the high computational cost associated with the Wasserstein distance hinders its practical applications for large-scale datasets. We propose a new embedding method for point clouds, which aims to embed point clouds into a Euclidean space, isometric to the Wasserstein space defined on the point clouds. In numerical experiments, we demonstrate that the point clouds decoded from the Euclidean averages and the interpolations in the embedding space accurately mimic the Wasserstein barycenters and interpolations of the point clouds. Furthermore, we show that the embedding vectors can be utilized as inputs for machine learning models (e.g., principal component analysis and neural networks).","PeriodicalId":293399,"journal":{"name":"2020 International Conference on 3D Vision (3DV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Learning Wasserstein Isometric Embedding for Point Clouds\",\"authors\":\"Keisuke Kawano, Satoshi Koide, Takuro Kutsuna\",\"doi\":\"10.1109/3DV50981.2020.00057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Wasserstein distance has been employed for determining the distance between point clouds, which have variable numbers of points and invariance of point order. However, the high computational cost associated with the Wasserstein distance hinders its practical applications for large-scale datasets. We propose a new embedding method for point clouds, which aims to embed point clouds into a Euclidean space, isometric to the Wasserstein space defined on the point clouds. In numerical experiments, we demonstrate that the point clouds decoded from the Euclidean averages and the interpolations in the embedding space accurately mimic the Wasserstein barycenters and interpolations of the point clouds. Furthermore, we show that the embedding vectors can be utilized as inputs for machine learning models (e.g., principal component analysis and neural networks).\",\"PeriodicalId\":293399,\"journal\":{\"name\":\"2020 International Conference on 3D Vision (3DV)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on 3D Vision (3DV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DV50981.2020.00057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV50981.2020.00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

采用Wasserstein距离来确定点云之间的距离,点云的点数是可变的,点的顺序是不变的。然而,与Wasserstein距离相关的高计算成本阻碍了其在大规模数据集上的实际应用。提出了一种新的点云嵌入方法,该方法将点云嵌入到欧几里德空间中,该空间与点云上定义的沃瑟斯坦空间等距。在数值实验中,我们证明了由欧几里得平均解码的点云和嵌入空间内的插值能够准确地模拟点云的Wasserstein质心和插值。此外,我们表明嵌入向量可以用作机器学习模型(例如,主成分分析和神经网络)的输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Wasserstein Isometric Embedding for Point Clouds
The Wasserstein distance has been employed for determining the distance between point clouds, which have variable numbers of points and invariance of point order. However, the high computational cost associated with the Wasserstein distance hinders its practical applications for large-scale datasets. We propose a new embedding method for point clouds, which aims to embed point clouds into a Euclidean space, isometric to the Wasserstein space defined on the point clouds. In numerical experiments, we demonstrate that the point clouds decoded from the Euclidean averages and the interpolations in the embedding space accurately mimic the Wasserstein barycenters and interpolations of the point clouds. Furthermore, we show that the embedding vectors can be utilized as inputs for machine learning models (e.g., principal component analysis and neural networks).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Screen-space Regularization on Differentiable Rasterization Motion Annotation Programs: A Scalable Approach to Annotating Kinematic Articulations in Large 3D Shape Collections Two-Stage Relation Constraint for Semantic Segmentation of Point Clouds Time Shifted IMU Preintegration for Temporal Calibration in Incremental Visual-Inertial Initialization KeystoneDepth: History in 3D
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1