Rebba Prashanth Kumar, Sangineni Siri Vandana, Dushetti Tejaswi, K. Charan, Ravichander Janapati, Usha Desai
{"title":"基于脑机接口应用的SSVEP信号分类","authors":"Rebba Prashanth Kumar, Sangineni Siri Vandana, Dushetti Tejaswi, K. Charan, Ravichander Janapati, Usha Desai","doi":"10.1109/ICICCSP53532.2022.9862368","DOIUrl":null,"url":null,"abstract":"Brain-Computer-Interface (BCI) is an exceedingly growing field of research where individual communicates to the computer, without physical connection. The natural responses to visual stimulation at a particular frequency of EEG are characterized as Steady-State Visually Evoked Potential (SSVEP) signals. Efficient classification of EEG signals is an important phase in BCI. In this paper, a method is anticipated for classification of SSVEP signals in which the standard dataset and Neural Network (NN) classifier is applied. The improved classification accuracy of 90 % is achieved using the proposed method. This methodology is useful in BCI applications such as assisting people who are suffering from neurodegenerative problems; Amyotrophic Lateral Sclerosis (ALS) for automatic wheelchair navigation-based multimedia applications, etc.","PeriodicalId":326163,"journal":{"name":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Classification of SSVEP Signals using Neural Networks for BCI Applications\",\"authors\":\"Rebba Prashanth Kumar, Sangineni Siri Vandana, Dushetti Tejaswi, K. Charan, Ravichander Janapati, Usha Desai\",\"doi\":\"10.1109/ICICCSP53532.2022.9862368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain-Computer-Interface (BCI) is an exceedingly growing field of research where individual communicates to the computer, without physical connection. The natural responses to visual stimulation at a particular frequency of EEG are characterized as Steady-State Visually Evoked Potential (SSVEP) signals. Efficient classification of EEG signals is an important phase in BCI. In this paper, a method is anticipated for classification of SSVEP signals in which the standard dataset and Neural Network (NN) classifier is applied. The improved classification accuracy of 90 % is achieved using the proposed method. This methodology is useful in BCI applications such as assisting people who are suffering from neurodegenerative problems; Amyotrophic Lateral Sclerosis (ALS) for automatic wheelchair navigation-based multimedia applications, etc.\",\"PeriodicalId\":326163,\"journal\":{\"name\":\"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICCSP53532.2022.9862368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICCSP53532.2022.9862368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of SSVEP Signals using Neural Networks for BCI Applications
Brain-Computer-Interface (BCI) is an exceedingly growing field of research where individual communicates to the computer, without physical connection. The natural responses to visual stimulation at a particular frequency of EEG are characterized as Steady-State Visually Evoked Potential (SSVEP) signals. Efficient classification of EEG signals is an important phase in BCI. In this paper, a method is anticipated for classification of SSVEP signals in which the standard dataset and Neural Network (NN) classifier is applied. The improved classification accuracy of 90 % is achieved using the proposed method. This methodology is useful in BCI applications such as assisting people who are suffering from neurodegenerative problems; Amyotrophic Lateral Sclerosis (ALS) for automatic wheelchair navigation-based multimedia applications, etc.