使用RML映射语言将分层源映射到RDF

Anastasia Dimou, M. V. Sande, Jason Slepicka, Pedro A. Szekely, E. Mannens, Craig A. Knoblock, R. Walle
{"title":"使用RML映射语言将分层源映射到RDF","authors":"Anastasia Dimou, M. V. Sande, Jason Slepicka, Pedro A. Szekely, E. Mannens, Craig A. Knoblock, R. Walle","doi":"10.1109/ICSC.2014.25","DOIUrl":null,"url":null,"abstract":"Incorporating structured data in the Linked Data cloud is still complicated, despite the numerous existing tools. In particular, hierarchical structured data (e.g., JSON) are underrepresented, due to their processing complexity. A uniform mapping formalization for data in different formats, which would enable reuse and exchange between tools and applied data, is missing. This paper describes a novel approach of mapping heterogeneous and hierarchical data sources into RDF using the RML mapping language, an extension over R2RML (the W3C standard for mapping relational databases into RDF). To facilitate those mappings, we present a toolset for producing RML mapping files using the Karma data modelling tool, and for consuming them using a prototype RML processor. A use case shows how RML facilitates the mapping rules' definition and execution to map several heterogeneous sources.","PeriodicalId":175352,"journal":{"name":"2014 IEEE International Conference on Semantic Computing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Mapping Hierarchical Sources into RDF Using the RML Mapping Language\",\"authors\":\"Anastasia Dimou, M. V. Sande, Jason Slepicka, Pedro A. Szekely, E. Mannens, Craig A. Knoblock, R. Walle\",\"doi\":\"10.1109/ICSC.2014.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Incorporating structured data in the Linked Data cloud is still complicated, despite the numerous existing tools. In particular, hierarchical structured data (e.g., JSON) are underrepresented, due to their processing complexity. A uniform mapping formalization for data in different formats, which would enable reuse and exchange between tools and applied data, is missing. This paper describes a novel approach of mapping heterogeneous and hierarchical data sources into RDF using the RML mapping language, an extension over R2RML (the W3C standard for mapping relational databases into RDF). To facilitate those mappings, we present a toolset for producing RML mapping files using the Karma data modelling tool, and for consuming them using a prototype RML processor. A use case shows how RML facilitates the mapping rules' definition and execution to map several heterogeneous sources.\",\"PeriodicalId\":175352,\"journal\":{\"name\":\"2014 IEEE International Conference on Semantic Computing\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Semantic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSC.2014.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2014.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

在关联数据云中整合结构化数据仍然很复杂,尽管有许多现有的工具。特别是,层次结构数据(例如JSON)由于其处理复杂性而未被充分表示。对于不同格式的数据,没有统一的映射形式化,这将支持工具和应用数据之间的重用和交换。本文描述了一种使用RML映射语言将异构和分层数据源映射到RDF的新方法,RML映射语言是对R2RML(将关系数据库映射到RDF的W3C标准)的扩展。为了促进这些映射,我们提供了一个工具集,用于使用Karma数据建模工具生成RML映射文件,并使用原型RML处理器来消费它们。用例展示了RML如何简化映射规则的定义和执行,从而映射多个异构源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mapping Hierarchical Sources into RDF Using the RML Mapping Language
Incorporating structured data in the Linked Data cloud is still complicated, despite the numerous existing tools. In particular, hierarchical structured data (e.g., JSON) are underrepresented, due to their processing complexity. A uniform mapping formalization for data in different formats, which would enable reuse and exchange between tools and applied data, is missing. This paper describes a novel approach of mapping heterogeneous and hierarchical data sources into RDF using the RML mapping language, an extension over R2RML (the W3C standard for mapping relational databases into RDF). To facilitate those mappings, we present a toolset for producing RML mapping files using the Karma data modelling tool, and for consuming them using a prototype RML processor. A use case shows how RML facilitates the mapping rules' definition and execution to map several heterogeneous sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fulgeo -- Towards an Intuitive User Interface for a Semantics-Enabled Multimedia Search Engine Refinement of Ontology-Constrained Human Pose Classification "Units of Meaning" in Medical Documents: Natural Language Processing Perspective Enhancing Multimedia Semantic Concept Mining and Retrieval by Incorporating Negative Correlations Cloud Resource Auto-scaling System Based on Hidden Markov Model (HMM)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1