{"title":"基于模糊神经网络的cstr故障诊断","authors":"J Zhang, A.J Morris, G.A Montague","doi":"10.1016/0066-4138(94)90058-2","DOIUrl":null,"url":null,"abstract":"<div><p>On-line process fault diagnosis using fuzzy neural networks is described in this paper. The fuzzy neural network is obtained by adding a fuzzification layer to a conventional feed forward neural network. The fuzzification layer converts increments in on-line measurements and controller outputs into three fuzzy sets: “increase”, “steady”, and “decrease”. Abnormalities in a process are represented by qualitative increments in on-line measurements and controller outputs. These are classified into various categories by the network. By representing abnormalities in qualitative form, training data can be condensed. The fuzzy approach ensures smooth transitions from one fuzzy sets to another and, hence, robustness to measurement noise is enhanced. The technique has been successfully applied to a CSTR system.</p></div>","PeriodicalId":100097,"journal":{"name":"Annual Review in Automatic Programming","volume":"19 ","pages":"Pages 153-158"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0066-4138(94)90058-2","citationCount":"9","resultStr":"{\"title\":\"Fault diagnosis of a cstr using fuzzy neural networks\",\"authors\":\"J Zhang, A.J Morris, G.A Montague\",\"doi\":\"10.1016/0066-4138(94)90058-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>On-line process fault diagnosis using fuzzy neural networks is described in this paper. The fuzzy neural network is obtained by adding a fuzzification layer to a conventional feed forward neural network. The fuzzification layer converts increments in on-line measurements and controller outputs into three fuzzy sets: “increase”, “steady”, and “decrease”. Abnormalities in a process are represented by qualitative increments in on-line measurements and controller outputs. These are classified into various categories by the network. By representing abnormalities in qualitative form, training data can be condensed. The fuzzy approach ensures smooth transitions from one fuzzy sets to another and, hence, robustness to measurement noise is enhanced. The technique has been successfully applied to a CSTR system.</p></div>\",\"PeriodicalId\":100097,\"journal\":{\"name\":\"Annual Review in Automatic Programming\",\"volume\":\"19 \",\"pages\":\"Pages 153-158\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0066-4138(94)90058-2\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review in Automatic Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0066413894900582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review in Automatic Programming","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0066413894900582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fault diagnosis of a cstr using fuzzy neural networks
On-line process fault diagnosis using fuzzy neural networks is described in this paper. The fuzzy neural network is obtained by adding a fuzzification layer to a conventional feed forward neural network. The fuzzification layer converts increments in on-line measurements and controller outputs into three fuzzy sets: “increase”, “steady”, and “decrease”. Abnormalities in a process are represented by qualitative increments in on-line measurements and controller outputs. These are classified into various categories by the network. By representing abnormalities in qualitative form, training data can be condensed. The fuzzy approach ensures smooth transitions from one fuzzy sets to another and, hence, robustness to measurement noise is enhanced. The technique has been successfully applied to a CSTR system.