网络可视化算法评估学生在网上论坛:模拟研究

Meriem Adraoui, A. Retbi, M. K. Idrissi, S. Bennani
{"title":"网络可视化算法评估学生在网上论坛:模拟研究","authors":"Meriem Adraoui, A. Retbi, M. K. Idrissi, S. Bennani","doi":"10.1109/ISACV.2018.8354020","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to detect at-risk students in online discussion forums in the platform Moodle. In this context, this paper presents a simulation study with a large database centralized on 4000 learners and 117988 interactions to evaluate students. To achieve our goal, we are used Gephi as a social network learning analytics tool to visualize the learners social network graphs and to implement three algorithms of layout and clustering to identify the learning community in order to predict the students' status (At-risk or safe). Finally, we discussed the result of each algorithm to improve the best one.","PeriodicalId":184662,"journal":{"name":"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Network visualization algorithms to evaluate students in online discussion forums: A simulation study\",\"authors\":\"Meriem Adraoui, A. Retbi, M. K. Idrissi, S. Bennani\",\"doi\":\"10.1109/ISACV.2018.8354020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study is to detect at-risk students in online discussion forums in the platform Moodle. In this context, this paper presents a simulation study with a large database centralized on 4000 learners and 117988 interactions to evaluate students. To achieve our goal, we are used Gephi as a social network learning analytics tool to visualize the learners social network graphs and to implement three algorithms of layout and clustering to identify the learning community in order to predict the students' status (At-risk or safe). Finally, we discussed the result of each algorithm to improve the best one.\",\"PeriodicalId\":184662,\"journal\":{\"name\":\"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISACV.2018.8354020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Intelligent Systems and Computer Vision (ISCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISACV.2018.8354020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本研究的目的是在Moodle平台的在线论坛中发现有风险的学生。在此背景下,本文提出了一项模拟研究,该研究使用一个集中于4000个学习者和117988个交互的大型数据库来评估学生。为了实现我们的目标,我们使用Gephi作为社交网络学习分析工具来可视化学习者的社交网络图,并实现三种布局和聚类算法来识别学习社区,以预测学生的状态(风险或安全)。最后,我们讨论了每种算法的结果,以改进最佳算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Network visualization algorithms to evaluate students in online discussion forums: A simulation study
The purpose of this study is to detect at-risk students in online discussion forums in the platform Moodle. In this context, this paper presents a simulation study with a large database centralized on 4000 learners and 117988 interactions to evaluate students. To achieve our goal, we are used Gephi as a social network learning analytics tool to visualize the learners social network graphs and to implement three algorithms of layout and clustering to identify the learning community in order to predict the students' status (At-risk or safe). Finally, we discussed the result of each algorithm to improve the best one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Policy based generic autonomic adapter for a context-aware social-collaborative system Dual-camera 3D head tracking for clinical infant monitoring Integrating web usage mining for an automatic learner profile detection: A learning styles-based approach Deep generative models: Survey Deep neural network dynamic traffic routing system for vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1