三电极NO2电化学传感器校正模型的建立

Adis Panjevic, T. Uzunović, Baris Can Ustundag
{"title":"三电极NO2电化学传感器校正模型的建立","authors":"Adis Panjevic, T. Uzunović, Baris Can Ustundag","doi":"10.1109/ICAT54566.2022.9811215","DOIUrl":null,"url":null,"abstract":"Ambient conditions, especially temperature and humidity, have a huge impact on the performance of an air quality sensor. In this paper, four correction models were built to compensate the impact of ambient conditions. Linear regression and machine learning algorithms were used for building the models. Correction models were trained by using three types of measurement data. Raw measurement data was used in the first case. Secondly, measurement data was corrected and a significant improvement was shown. Lastly, measurements of various ambient conditions were used as well. Using corrected and extended measurement data brought a great improvement in accuracy of the models. A neural network correction model proved to be the most efficient in all cases. Compensating the impact of ambient conditions on the performance of an air quality sensor by using correction models was efficient and this method could be used in the air quality monitoring applications. This is of particular importance for usage of low-cost sensors in the air quality monitoring.","PeriodicalId":414786,"journal":{"name":"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)","volume":"7 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Correction Models for Three-Electrode NO2 Electrochemical Sensor\",\"authors\":\"Adis Panjevic, T. Uzunović, Baris Can Ustundag\",\"doi\":\"10.1109/ICAT54566.2022.9811215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ambient conditions, especially temperature and humidity, have a huge impact on the performance of an air quality sensor. In this paper, four correction models were built to compensate the impact of ambient conditions. Linear regression and machine learning algorithms were used for building the models. Correction models were trained by using three types of measurement data. Raw measurement data was used in the first case. Secondly, measurement data was corrected and a significant improvement was shown. Lastly, measurements of various ambient conditions were used as well. Using corrected and extended measurement data brought a great improvement in accuracy of the models. A neural network correction model proved to be the most efficient in all cases. Compensating the impact of ambient conditions on the performance of an air quality sensor by using correction models was efficient and this method could be used in the air quality monitoring applications. This is of particular importance for usage of low-cost sensors in the air quality monitoring.\",\"PeriodicalId\":414786,\"journal\":{\"name\":\"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)\",\"volume\":\"7 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAT54566.2022.9811215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 XXVIII International Conference on Information, Communication and Automation Technologies (ICAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAT54566.2022.9811215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

环境条件,特别是温度和湿度,对空气质量传感器的性能有很大的影响。本文建立了四种校正模型来补偿环境条件的影响。采用线性回归和机器学习算法建立模型。利用三种测量数据训练校正模型。在第一种情况下使用原始测量数据。其次,对测量数据进行了修正,得到了显著的改善。最后,对各种环境条件进行了测量。采用校正后的扩展测量数据,大大提高了模型的精度。神经网络修正模型在所有情况下都是最有效的。利用修正模型补偿环境条件对空气质量传感器性能的影响是一种有效的方法,可用于空气质量监测。这对于低成本传感器在空气质量监测中的应用尤为重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of Correction Models for Three-Electrode NO2 Electrochemical Sensor
Ambient conditions, especially temperature and humidity, have a huge impact on the performance of an air quality sensor. In this paper, four correction models were built to compensate the impact of ambient conditions. Linear regression and machine learning algorithms were used for building the models. Correction models were trained by using three types of measurement data. Raw measurement data was used in the first case. Secondly, measurement data was corrected and a significant improvement was shown. Lastly, measurements of various ambient conditions were used as well. Using corrected and extended measurement data brought a great improvement in accuracy of the models. A neural network correction model proved to be the most efficient in all cases. Compensating the impact of ambient conditions on the performance of an air quality sensor by using correction models was efficient and this method could be used in the air quality monitoring applications. This is of particular importance for usage of low-cost sensors in the air quality monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Methodology to Develop Extended Reality Applications for Exhibition Spaces in Museums Prediction of cardiovascular disease Mitigating Power Peaks in Automotive Power Networks by Exploitation of Flexible Loads Volt-Var Control for Smart Cities with Integrated Public Transportation System Graph Theory as an Engine for Real-Time Advanced Distribution Management System Enhancements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1