利用背景知识提高DNA序列的归纳学习

H. Hirsh, M. Noordewier
{"title":"利用背景知识提高DNA序列的归纳学习","authors":"H. Hirsh, M. Noordewier","doi":"10.1109/CAIA.1994.323654","DOIUrl":null,"url":null,"abstract":"Successful inductive learning requires that training data be expressed in a form where underlying regularities can be recognized by the learning system. Unfortunately, many applications of inductive learning/spl minus/especially in the domain of molecular biology/spl minus/have assumed that data are provided in a form already suitable for learning, whether or not such an assumption is actually justified. This paper describes the use of background knowledge of molecular biology to re-express data into a form more appropriate for learning. Our results show dramatic improvements in classification accuracy for two very different classes of DNA sequences using traditional \"off-the-sheIf\" decision-tree and neural-network inductive-learning methods.<<ETX>>","PeriodicalId":297396,"journal":{"name":"Proceedings of the Tenth Conference on Artificial Intelligence for Applications","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Using background knowledge to improve inductive learning of DNA sequences\",\"authors\":\"H. Hirsh, M. Noordewier\",\"doi\":\"10.1109/CAIA.1994.323654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Successful inductive learning requires that training data be expressed in a form where underlying regularities can be recognized by the learning system. Unfortunately, many applications of inductive learning/spl minus/especially in the domain of molecular biology/spl minus/have assumed that data are provided in a form already suitable for learning, whether or not such an assumption is actually justified. This paper describes the use of background knowledge of molecular biology to re-express data into a form more appropriate for learning. Our results show dramatic improvements in classification accuracy for two very different classes of DNA sequences using traditional \\\"off-the-sheIf\\\" decision-tree and neural-network inductive-learning methods.<<ETX>>\",\"PeriodicalId\":297396,\"journal\":{\"name\":\"Proceedings of the Tenth Conference on Artificial Intelligence for Applications\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Tenth Conference on Artificial Intelligence for Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAIA.1994.323654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth Conference on Artificial Intelligence for Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIA.1994.323654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

成功的归纳学习要求训练数据以一种能够被学习系统识别出潜在规律的形式来表达。不幸的是,归纳学习的许多应用,特别是在分子生物学领域,已经假设数据以一种已经适合学习的形式提供,无论这种假设实际上是否合理。本文描述了利用分子生物学的背景知识将数据重新表达为更适合学习的形式。我们的研究结果表明,使用传统的“现成”决策树和神经网络归纳学习方法,两种非常不同类别的DNA序列的分类精度有了显着提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using background knowledge to improve inductive learning of DNA sequences
Successful inductive learning requires that training data be expressed in a form where underlying regularities can be recognized by the learning system. Unfortunately, many applications of inductive learning/spl minus/especially in the domain of molecular biology/spl minus/have assumed that data are provided in a form already suitable for learning, whether or not such an assumption is actually justified. This paper describes the use of background knowledge of molecular biology to re-express data into a form more appropriate for learning. Our results show dramatic improvements in classification accuracy for two very different classes of DNA sequences using traditional "off-the-sheIf" decision-tree and neural-network inductive-learning methods.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OaSiS: integrating safety reasoning for decision support in oncology Memory-based parsing with parallel marker-passing A study of an expert system for interpreting human walking disorders Integrating case-based reasoning, knowledge-based approach and Dijkstra algorithm for route finding Learning control knowledge through cases in schedule optimization problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1