基于k因子控制的太阳能光伏系统MPPT DC/DC升压变换器建模与控制

Adithya Vangari, D. Haribabu, J. Sakamuri
{"title":"基于k因子控制的太阳能光伏系统MPPT DC/DC升压变换器建模与控制","authors":"Adithya Vangari, D. Haribabu, J. Sakamuri","doi":"10.1109/ENERGYECONOMICS.2015.7235087","DOIUrl":null,"url":null,"abstract":"This paper is focused on the design of a controller for the DC/DC boost converter using K factor control, which is based on modified PI control method, for maximum power point tracking (MPPT) of solar PV system. A mathematical model for boost converter based on small signal averaging approach is presented. Design of the passive elements of the boost converter as per the system specifications is also illustrated. The performance of the proposed K factor control method is verified with the simulations for MPPT on solar PV system at different atmospheric conditions. A new circuit based model for solar PV array, which includes the effect of solar insolation and temperature on PV array output, for the application in power system transient simulations, is also presented. The performance of the PV array model is verified with simulations at different atmospheric conditions. A 160W PV module from BP solar is modelled and its characteristics are validated with the corresponding results from its datasheet. The simulations are performed using PSCAD/EMTDC.","PeriodicalId":130355,"journal":{"name":"2015 International Conference on Energy Economics and Environment (ICEEE)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Modeling and control of DC/DC boost converter using K-factor control for MPPT of solar PV system\",\"authors\":\"Adithya Vangari, D. Haribabu, J. Sakamuri\",\"doi\":\"10.1109/ENERGYECONOMICS.2015.7235087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is focused on the design of a controller for the DC/DC boost converter using K factor control, which is based on modified PI control method, for maximum power point tracking (MPPT) of solar PV system. A mathematical model for boost converter based on small signal averaging approach is presented. Design of the passive elements of the boost converter as per the system specifications is also illustrated. The performance of the proposed K factor control method is verified with the simulations for MPPT on solar PV system at different atmospheric conditions. A new circuit based model for solar PV array, which includes the effect of solar insolation and temperature on PV array output, for the application in power system transient simulations, is also presented. The performance of the PV array model is verified with simulations at different atmospheric conditions. A 160W PV module from BP solar is modelled and its characteristics are validated with the corresponding results from its datasheet. The simulations are performed using PSCAD/EMTDC.\",\"PeriodicalId\":130355,\"journal\":{\"name\":\"2015 International Conference on Energy Economics and Environment (ICEEE)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Energy Economics and Environment (ICEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ENERGYECONOMICS.2015.7235087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Energy Economics and Environment (ICEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENERGYECONOMICS.2015.7235087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

针对太阳能光伏发电系统的最大功率点跟踪问题,研究了基于改进PI控制方法的K因子控制DC/DC升压变换器控制器的设计。提出了一种基于小信号平均法的升压变换器数学模型。并根据系统规范对升压变换器的无源元件进行了设计。通过不同大气条件下太阳能光伏系统MPPT仿真,验证了K因子控制方法的有效性。提出了一种新的基于电路的太阳能光伏阵列模型,该模型考虑了太阳日照和温度对光伏阵列输出的影响,可用于电力系统暂态仿真。通过不同大气条件下的仿真,验证了该模型的性能。对BP太阳能公司的160W光伏组件进行了建模,并根据其数据表的相应结果验证了其特性。采用PSCAD/EMTDC进行仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling and control of DC/DC boost converter using K-factor control for MPPT of solar PV system
This paper is focused on the design of a controller for the DC/DC boost converter using K factor control, which is based on modified PI control method, for maximum power point tracking (MPPT) of solar PV system. A mathematical model for boost converter based on small signal averaging approach is presented. Design of the passive elements of the boost converter as per the system specifications is also illustrated. The performance of the proposed K factor control method is verified with the simulations for MPPT on solar PV system at different atmospheric conditions. A new circuit based model for solar PV array, which includes the effect of solar insolation and temperature on PV array output, for the application in power system transient simulations, is also presented. The performance of the PV array model is verified with simulations at different atmospheric conditions. A 160W PV module from BP solar is modelled and its characteristics are validated with the corresponding results from its datasheet. The simulations are performed using PSCAD/EMTDC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Letter of acquisition Smart grid implementation in India — A case study of Puducherry Pilot Project, India One hour ahead load forecast of PJM electricity market & UPPCL Comparative study of optimization algorithms for enhancement of small signal stability by designing PSS for multi-machine power system Aging leader and challenger based PSO for harmonic mitigation using SAPF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1