海报:边缘互联网服务的配置管理:数据驱动的方法

Yue Zhang, Christopher Stewart
{"title":"海报:边缘互联网服务的配置管理:数据驱动的方法","authors":"Yue Zhang, Christopher Stewart","doi":"10.1109/SEC50012.2020.00020","DOIUrl":null,"url":null,"abstract":"Internet services are increasingly pushed from the remote cloud to the edge sites close to data sources to offer fast response time and low energy footprint. However, software deployed at edge sites must be updated frequently. Performing updates as soon as they are available consumes a large amount of energy. Configuration management tools that install software updates and manage allowed staleness can inflate energy demands, especially when updates interrupt idle periods at the edge site and block processors from entering power-saving modes. Our research studies configuration management policies, their effect on energy footprint and strategies to optimize them. We have observed that policies yielding low energy footprint differ from site to site and over time. We propose a data-driven approach that uses data collected at each edge site to predict an energy-efficient policy and also guards against worst-case performance if data-driven predictions error occurs. We use a novel randomwalk approach to manage data-driven policies that yield a low footprint for a representative trace of updates observed at an edge site. We are setting up 4 edge service benchmarks powered by AI inference to create realistic software update traces.","PeriodicalId":375577,"journal":{"name":"2020 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Poster: Configuration Management for Internet Services at the Edge: A Data-Driven Approach\",\"authors\":\"Yue Zhang, Christopher Stewart\",\"doi\":\"10.1109/SEC50012.2020.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internet services are increasingly pushed from the remote cloud to the edge sites close to data sources to offer fast response time and low energy footprint. However, software deployed at edge sites must be updated frequently. Performing updates as soon as they are available consumes a large amount of energy. Configuration management tools that install software updates and manage allowed staleness can inflate energy demands, especially when updates interrupt idle periods at the edge site and block processors from entering power-saving modes. Our research studies configuration management policies, their effect on energy footprint and strategies to optimize them. We have observed that policies yielding low energy footprint differ from site to site and over time. We propose a data-driven approach that uses data collected at each edge site to predict an energy-efficient policy and also guards against worst-case performance if data-driven predictions error occurs. We use a novel randomwalk approach to manage data-driven policies that yield a low footprint for a representative trace of updates observed at an edge site. We are setting up 4 edge service benchmarks powered by AI inference to create realistic software update traces.\",\"PeriodicalId\":375577,\"journal\":{\"name\":\"2020 IEEE/ACM Symposium on Edge Computing (SEC)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ACM Symposium on Edge Computing (SEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEC50012.2020.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC50012.2020.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

互联网服务越来越多地从远程云推送到靠近数据源的边缘站点,以提供快速响应时间和低能耗。但是,部署在边缘站点的软件必须经常更新。一旦可用就立即执行更新会消耗大量的能源。安装软件更新和管理允许过期的配置管理工具可能会增加能源需求,特别是当更新中断边缘站点的空闲时间并阻止处理器进入节能模式时。我们的研究研究了配置管理策略,它们对能源足迹的影响以及优化它们的策略。我们观察到,产生低能源足迹的政策因地点和时间而异。我们提出了一种数据驱动的方法,该方法使用在每个边缘站点收集的数据来预测节能策略,并且如果数据驱动的预测发生错误,还可以防止最坏情况的性能。我们使用一种新颖的随机行走方法来管理数据驱动的策略,该策略为在边缘站点观察到的具有代表性的更新跟踪产生低足迹。我们正在设置4个由人工智能推理驱动的边缘服务基准,以创建逼真的软件更新痕迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Poster: Configuration Management for Internet Services at the Edge: A Data-Driven Approach
Internet services are increasingly pushed from the remote cloud to the edge sites close to data sources to offer fast response time and low energy footprint. However, software deployed at edge sites must be updated frequently. Performing updates as soon as they are available consumes a large amount of energy. Configuration management tools that install software updates and manage allowed staleness can inflate energy demands, especially when updates interrupt idle periods at the edge site and block processors from entering power-saving modes. Our research studies configuration management policies, their effect on energy footprint and strategies to optimize them. We have observed that policies yielding low energy footprint differ from site to site and over time. We propose a data-driven approach that uses data collected at each edge site to predict an energy-efficient policy and also guards against worst-case performance if data-driven predictions error occurs. We use a novel randomwalk approach to manage data-driven policies that yield a low footprint for a representative trace of updates observed at an edge site. We are setting up 4 edge service benchmarks powered by AI inference to create realistic software update traces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Position Paper: Towards a Robust Edge-Native Storage System Exploring Decentralized Collaboration in Heterogeneous Edge Training Message from the Program Co-Chairs FareQR: Fast and Reliable Screen-Camera Transfer System for Mobile Devices using QR Code Demo: EdgeVPN.io: Open-source Virtual Private Network for Seamless Edge Computing with Kubernetes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1