面向人物再识别的前景信息分层处理及补全机制

Jiajian Huang, Shih-Ping Wang
{"title":"面向人物再识别的前景信息分层处理及补全机制","authors":"Jiajian Huang, Shih-Ping Wang","doi":"10.1142/s1469026822500080","DOIUrl":null,"url":null,"abstract":"Person re-identification (Re-ID) arises in many applications such as video surveillance and intelligent security. Background clutter and distribution drift are two issues that cross-domain person Re-ID faces. In this research, we propose that the background clutter problem be solved by combining semantic segmentation technology with human attribute identification technology. To overcome the distribution drift problem, we propose employing MMD as a metric for distribution differences and processing methods based on feature properties. The results of the experiments reveal that our strategy yielded the best results.","PeriodicalId":422521,"journal":{"name":"Int. J. Comput. Intell. Appl.","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hierarchical Processing and Completion Mechanism of Foreground Information for Person Re-Identification\",\"authors\":\"Jiajian Huang, Shih-Ping Wang\",\"doi\":\"10.1142/s1469026822500080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Person re-identification (Re-ID) arises in many applications such as video surveillance and intelligent security. Background clutter and distribution drift are two issues that cross-domain person Re-ID faces. In this research, we propose that the background clutter problem be solved by combining semantic segmentation technology with human attribute identification technology. To overcome the distribution drift problem, we propose employing MMD as a metric for distribution differences and processing methods based on feature properties. The results of the experiments reveal that our strategy yielded the best results.\",\"PeriodicalId\":422521,\"journal\":{\"name\":\"Int. J. Comput. Intell. Appl.\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Intell. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1469026822500080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Intell. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1469026822500080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在视频监控、智能安防等诸多应用中都出现了人员再识别(Re-ID)。背景杂波和分布漂移是跨域人员身份识别面临的两个问题。在本研究中,我们提出将语义分割技术与人类属性识别技术相结合来解决背景杂波问题。为了克服分布漂移问题,我们提出使用MMD作为分布差异度量和基于特征属性的处理方法。实验结果表明,我们的策略产生了最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hierarchical Processing and Completion Mechanism of Foreground Information for Person Re-Identification
Person re-identification (Re-ID) arises in many applications such as video surveillance and intelligent security. Background clutter and distribution drift are two issues that cross-domain person Re-ID faces. In this research, we propose that the background clutter problem be solved by combining semantic segmentation technology with human attribute identification technology. To overcome the distribution drift problem, we propose employing MMD as a metric for distribution differences and processing methods based on feature properties. The results of the experiments reveal that our strategy yielded the best results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CT Images Segmentation Using a Deep Learning-Based Approach for Preoperative Projection of Human Organ Model Using Augmented Reality Technology Styling Classification of Group Photos Fusing Head and Pose Features Genetic Algorithm-Based Optimal Resource Trust Line Prediction in Cloud Computing Shearlet Transform-Based Novel Method for Multimodality Medical Image Fusion Using Deep Learning An Energy-Efficient Clustering and Fuzzy-Based Path Selection for Flying Ad-Hoc Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1