基于人工神经网络的嵌入式语音识别系统的实现

Pranjali P. Patange, J. Alex
{"title":"基于人工神经网络的嵌入式语音识别系统的实现","authors":"Pranjali P. Patange, J. Alex","doi":"10.1109/ICNETS2.2017.8067968","DOIUrl":null,"url":null,"abstract":"Speech recognition systems are ubiquitous and find its application in automated voice control, voice dialling and automated directory assistance. This paper aims at implementing a neural network based isolated spoken word recognition system on an embedded board — Raspberry Pi using open source software called octave. Mel-Frequency Cepstral Coefficient (MFCC) features are extracted from speech signal and given as input to the neural network. The Feed Forward Multi-Layer Perceptron Neural Network trained with back propagation rule is implemented using Octave in Raspberry Pi. TIDIGITS corpus is used for the experiment. Speaker dependent speech recognition results in 100% accuracy but the speaker independent recognition system shows less accuracy.","PeriodicalId":413865,"journal":{"name":"2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Implementation of ANN based speech recognition system on an embedded board\",\"authors\":\"Pranjali P. Patange, J. Alex\",\"doi\":\"10.1109/ICNETS2.2017.8067968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech recognition systems are ubiquitous and find its application in automated voice control, voice dialling and automated directory assistance. This paper aims at implementing a neural network based isolated spoken word recognition system on an embedded board — Raspberry Pi using open source software called octave. Mel-Frequency Cepstral Coefficient (MFCC) features are extracted from speech signal and given as input to the neural network. The Feed Forward Multi-Layer Perceptron Neural Network trained with back propagation rule is implemented using Octave in Raspberry Pi. TIDIGITS corpus is used for the experiment. Speaker dependent speech recognition results in 100% accuracy but the speaker independent recognition system shows less accuracy.\",\"PeriodicalId\":413865,\"journal\":{\"name\":\"2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNETS2.2017.8067968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNETS2.2017.8067968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

语音识别系统无处不在,在自动语音控制、语音拨号和自动目录辅助等方面都有广泛的应用。本文旨在利用开源软件octave在嵌入式板树莓派上实现一个基于神经网络的孤立语音识别系统。从语音信号中提取mel -频率倒谱系数(MFCC)特征,并将其作为神经网络的输入。利用Octave在树莓派上实现了基于反向传播规则训练的前馈多层感知器神经网络。实验使用TIDIGITS语料库。依赖说话人的语音识别准确率达到100%,而独立说话人识别系统的准确率较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementation of ANN based speech recognition system on an embedded board
Speech recognition systems are ubiquitous and find its application in automated voice control, voice dialling and automated directory assistance. This paper aims at implementing a neural network based isolated spoken word recognition system on an embedded board — Raspberry Pi using open source software called octave. Mel-Frequency Cepstral Coefficient (MFCC) features are extracted from speech signal and given as input to the neural network. The Feed Forward Multi-Layer Perceptron Neural Network trained with back propagation rule is implemented using Octave in Raspberry Pi. TIDIGITS corpus is used for the experiment. Speaker dependent speech recognition results in 100% accuracy but the speaker independent recognition system shows less accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Security protocols for Internet of Things: A survey Secure identity management in mobile cloud computing Vehicle license plate detection and recognition using non-blind image de-blurring algorithm A connectivity protocol for star topology using wireless sensor network Enhancing the efficiency of carry skip adder using MBFA-10T
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1