基于均匀b样条的IMU和位姿数据连续融合

Haohao Hu, Johannes Beck, M. Lauer, C. Stiller
{"title":"基于均匀b样条的IMU和位姿数据连续融合","authors":"Haohao Hu, Johannes Beck, M. Lauer, C. Stiller","doi":"10.1109/MFI49285.2020.9235248","DOIUrl":null,"url":null,"abstract":"In this work, we present an uniform B-spline based continuous fusion approach, which fuses the motion data from an inertial measurement unit and the pose data from a visual localization system accurately, efficiently and continu-ously. Currently, in the domain of robotics and autonomous driving, most of the ego motion fusion approaches are filter based or pose graph based. By using the filter based approaches like the Kalman Filter or the Particle Filter, usually, many parameters should be set carefully, which is a big overhead. Besides that, the filter based approaches can only fuse data in a time forwards direction, which is a big disadvantage in processing async data. Since the pose graph based approaches only fuse the pose data, the inertial measurement unit data should be integrated to estimate the corresponding pose data firstly, which can however bring accumulated error into the fusion system. Additionally, the filter based approaches and the pose graph based approaches only provide discrete fusion results, which may decrease the accuracy of the data processing steps afterwards. Since the fusion approach is generally needed for robots and automated driving vehicles, it is a major goal to make it more accurate, robust, efficient and continuous. Therefore, in this work, we address this problem and apply the axis-angle rotation representation method, the Rodrigues’ formula and the uniform B-spline implementation to solve the ego motion fusion problem continuously. Evaluation results performed on the real world data show that our approach provides accurate, robust and continuous fusion results.","PeriodicalId":446154,"journal":{"name":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous Fusion of IMU and Pose Data using Uniform B-Spline\",\"authors\":\"Haohao Hu, Johannes Beck, M. Lauer, C. Stiller\",\"doi\":\"10.1109/MFI49285.2020.9235248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present an uniform B-spline based continuous fusion approach, which fuses the motion data from an inertial measurement unit and the pose data from a visual localization system accurately, efficiently and continu-ously. Currently, in the domain of robotics and autonomous driving, most of the ego motion fusion approaches are filter based or pose graph based. By using the filter based approaches like the Kalman Filter or the Particle Filter, usually, many parameters should be set carefully, which is a big overhead. Besides that, the filter based approaches can only fuse data in a time forwards direction, which is a big disadvantage in processing async data. Since the pose graph based approaches only fuse the pose data, the inertial measurement unit data should be integrated to estimate the corresponding pose data firstly, which can however bring accumulated error into the fusion system. Additionally, the filter based approaches and the pose graph based approaches only provide discrete fusion results, which may decrease the accuracy of the data processing steps afterwards. Since the fusion approach is generally needed for robots and automated driving vehicles, it is a major goal to make it more accurate, robust, efficient and continuous. Therefore, in this work, we address this problem and apply the axis-angle rotation representation method, the Rodrigues’ formula and the uniform B-spline implementation to solve the ego motion fusion problem continuously. Evaluation results performed on the real world data show that our approach provides accurate, robust and continuous fusion results.\",\"PeriodicalId\":446154,\"journal\":{\"name\":\"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI49285.2020.9235248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI49285.2020.9235248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于均匀b样条的连续融合方法,将惯性测量单元的运动数据和视觉定位系统的姿态数据精确、高效、连续地融合在一起。目前,在机器人和自动驾驶领域,大多数自我运动融合方法都是基于滤波器或基于姿态图的。使用基于滤波的方法,如卡尔曼滤波或粒子滤波,通常需要仔细设置许多参数,这是一个很大的开销。此外,基于过滤器的方法只能在时间向前的方向上融合数据,这是处理异步数据的一大缺点。由于基于位姿图的方法只对位姿数据进行融合,因此需要先对惯性测量单元数据进行融合来估计相应的位姿数据,这样会给融合系统带来累积误差。此外,基于滤波器的方法和基于位姿图的方法只能提供离散的融合结果,这可能会降低后续数据处理步骤的准确性。由于机器人和自动驾驶车辆通常需要融合方法,因此使其更加准确,稳健,高效和连续是一个主要目标。因此,在这项工作中,我们解决了这个问题,并应用轴角旋转表示方法,Rodrigues公式和均匀b样条实现来连续解决自我运动融合问题。在实际数据上进行的评估结果表明,我们的方法提供了准确、鲁棒和连续的融合结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Continuous Fusion of IMU and Pose Data using Uniform B-Spline
In this work, we present an uniform B-spline based continuous fusion approach, which fuses the motion data from an inertial measurement unit and the pose data from a visual localization system accurately, efficiently and continu-ously. Currently, in the domain of robotics and autonomous driving, most of the ego motion fusion approaches are filter based or pose graph based. By using the filter based approaches like the Kalman Filter or the Particle Filter, usually, many parameters should be set carefully, which is a big overhead. Besides that, the filter based approaches can only fuse data in a time forwards direction, which is a big disadvantage in processing async data. Since the pose graph based approaches only fuse the pose data, the inertial measurement unit data should be integrated to estimate the corresponding pose data firstly, which can however bring accumulated error into the fusion system. Additionally, the filter based approaches and the pose graph based approaches only provide discrete fusion results, which may decrease the accuracy of the data processing steps afterwards. Since the fusion approach is generally needed for robots and automated driving vehicles, it is a major goal to make it more accurate, robust, efficient and continuous. Therefore, in this work, we address this problem and apply the axis-angle rotation representation method, the Rodrigues’ formula and the uniform B-spline implementation to solve the ego motion fusion problem continuously. Evaluation results performed on the real world data show that our approach provides accurate, robust and continuous fusion results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OAFuser: Online Adaptive Extended Object Tracking and Fusion using automotive Radar Detections Observability driven Multi-modal Line-scan Camera Calibration Localization and velocity estimation based on multiple bistatic measurements A Continuous Probabilistic Origin Association Filter for Extended Object Tracking Towards Automatic Classification of Fragmented Rock Piles via Proprioceptive Sensing and Wavelet Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1