{"title":"具有加工公差的摆线针轮传动","authors":"J. Blanche, D. C. H. Yang","doi":"10.1115/1.3259004","DOIUrl":null,"url":null,"abstract":"The cycloidal speed reducer, or cycloid drive, is an epicyclic gear train in which the profile of the planet gear is an epitrochoid and the annular sun gear has rollers as its teeth. The cycloid drive has very high efficiency and small size, in comparison with a conventional gear mechanism, making it an attractive candidate for limited space applications. In this paper an analytical model is developed which models the cycloid drive with machining tolerances. Consequently, the effect of machining tolerances on backlash and torque ripple are investigated. It is found that both the backlash and the torque ripple are inherent periodic functions of the input crank angle","PeriodicalId":206146,"journal":{"name":"Journal of Mechanisms Transmissions and Automation in Design","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":"{\"title\":\"Cycloid Drives With Machining Tolerances\",\"authors\":\"J. Blanche, D. C. H. Yang\",\"doi\":\"10.1115/1.3259004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cycloidal speed reducer, or cycloid drive, is an epicyclic gear train in which the profile of the planet gear is an epitrochoid and the annular sun gear has rollers as its teeth. The cycloid drive has very high efficiency and small size, in comparison with a conventional gear mechanism, making it an attractive candidate for limited space applications. In this paper an analytical model is developed which models the cycloid drive with machining tolerances. Consequently, the effect of machining tolerances on backlash and torque ripple are investigated. It is found that both the backlash and the torque ripple are inherent periodic functions of the input crank angle\",\"PeriodicalId\":206146,\"journal\":{\"name\":\"Journal of Mechanisms Transmissions and Automation in Design\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"103\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanisms Transmissions and Automation in Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.3259004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms Transmissions and Automation in Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.3259004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The cycloidal speed reducer, or cycloid drive, is an epicyclic gear train in which the profile of the planet gear is an epitrochoid and the annular sun gear has rollers as its teeth. The cycloid drive has very high efficiency and small size, in comparison with a conventional gear mechanism, making it an attractive candidate for limited space applications. In this paper an analytical model is developed which models the cycloid drive with machining tolerances. Consequently, the effect of machining tolerances on backlash and torque ripple are investigated. It is found that both the backlash and the torque ripple are inherent periodic functions of the input crank angle