{"title":"引导并行数组融合与索引类型","authors":"B. Lippmeier, M. Chakravarty, G. Keller, S. Jones","doi":"10.1145/2364506.2364511","DOIUrl":null,"url":null,"abstract":"We present a refined approach to parallel array fusion that uses indexed types to specify the internal representation of each array. Our approach aids the client programmer in reasoning about the performance of their program in terms of the source code. It also makes the intermediate code easier to transform at compile-time, resulting in faster compilation and more reliable runtimes. We demonstrate how our new approach improves both the clarity and performance of several end-user written programs, including a fluid flow solver and an interpolator for volumetric data.","PeriodicalId":188691,"journal":{"name":"ACM SIGPLAN Symposium/Workshop on Haskell","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Guiding parallel array fusion with indexed types\",\"authors\":\"B. Lippmeier, M. Chakravarty, G. Keller, S. Jones\",\"doi\":\"10.1145/2364506.2364511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a refined approach to parallel array fusion that uses indexed types to specify the internal representation of each array. Our approach aids the client programmer in reasoning about the performance of their program in terms of the source code. It also makes the intermediate code easier to transform at compile-time, resulting in faster compilation and more reliable runtimes. We demonstrate how our new approach improves both the clarity and performance of several end-user written programs, including a fluid flow solver and an interpolator for volumetric data.\",\"PeriodicalId\":188691,\"journal\":{\"name\":\"ACM SIGPLAN Symposium/Workshop on Haskell\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGPLAN Symposium/Workshop on Haskell\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2364506.2364511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium/Workshop on Haskell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2364506.2364511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a refined approach to parallel array fusion that uses indexed types to specify the internal representation of each array. Our approach aids the client programmer in reasoning about the performance of their program in terms of the source code. It also makes the intermediate code easier to transform at compile-time, resulting in faster compilation and more reliable runtimes. We demonstrate how our new approach improves both the clarity and performance of several end-user written programs, including a fluid flow solver and an interpolator for volumetric data.