{"title":"Design and Implementation of a 12.5kW PMSM as Paraglider Towing Winch","authors":"W. Gruber, Wolfgang Stallinger","doi":"10.1109/IEMDC47953.2021.9449559","DOIUrl":null,"url":null,"abstract":"This work deals with a compact and efficient permanent magnet excited synchronous machine to be used as paraglider towing winch. A battery supply with a voltage of only 48V is chosen for mobility and safety reasons. A rough machine design is first carried out analytically. After predesign, the final machine geometry is genetically optimized by 2D finite element method simulation using the software tool SyMSpace. After manufacture, the drive is commissioned with field-oriented control and the expected machine characteristics are compared with measurement results. Finally, also two self-sensing rotor angle estimation methods (one for the lower and one for upper speed range) are implemented and evaluated as back-up system to the installed rotor angle encoder.","PeriodicalId":106489,"journal":{"name":"2021 IEEE International Electric Machines & Drives Conference (IEMDC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Electric Machines & Drives Conference (IEMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMDC47953.2021.9449559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Implementation of a 12.5kW PMSM as Paraglider Towing Winch
This work deals with a compact and efficient permanent magnet excited synchronous machine to be used as paraglider towing winch. A battery supply with a voltage of only 48V is chosen for mobility and safety reasons. A rough machine design is first carried out analytically. After predesign, the final machine geometry is genetically optimized by 2D finite element method simulation using the software tool SyMSpace. After manufacture, the drive is commissioned with field-oriented control and the expected machine characteristics are compared with measurement results. Finally, also two self-sensing rotor angle estimation methods (one for the lower and one for upper speed range) are implemented and evaluated as back-up system to the installed rotor angle encoder.