{"title":"光子计数水下无线光测距与通信集成系统仿真","authors":"Hao Yang, Qiurong Yan, Shanglin Wang, Xiancheng Xiong, Peng Li, Wei Wang","doi":"10.1109/CCPQT56151.2022.00024","DOIUrl":null,"url":null,"abstract":"Although many researchers have achieved wireless optical ranging and communication based on Avalanche Photon Diode (APD) detectors and PIN detectors. However, due to the low sensitivity of APD and PIN detectors, their working distances are limited. In order to achieve long-distance underwater wireless optical communication, a Single-Photon Avalanche Diode (SPAD) with photon-limited sensitivity is used to detect optical signals. In addition, most literatures do not specially design the data frames of ranging and communication, which makes it difficult to perform ranging and communication at the same time. In view of the fact that there is currently no systematic solution for simultaneous communication and high-precision ranging under underwater photon counting, this paper sorts out the relevant technical details, proposes an integrated ranging and communication scheme applied to photon counting, designs a special data frame that integrates ranging and communication, and proposes an extraction and recovery scheme for ranging and communication signals. Simulation shows that this scheme can achieve underwater photon counting wireless optical communication with a communication distance of 160m and an SER of 9.75×10-6, and the ranging accuracy is better than 1.59cm.","PeriodicalId":235893,"journal":{"name":"2022 International Conference on Computing, Communication, Perception and Quantum Technology (CCPQT)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of Integrated System of Photon-Counting Underwater Wireless Optical Ranging and Communication\",\"authors\":\"Hao Yang, Qiurong Yan, Shanglin Wang, Xiancheng Xiong, Peng Li, Wei Wang\",\"doi\":\"10.1109/CCPQT56151.2022.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although many researchers have achieved wireless optical ranging and communication based on Avalanche Photon Diode (APD) detectors and PIN detectors. However, due to the low sensitivity of APD and PIN detectors, their working distances are limited. In order to achieve long-distance underwater wireless optical communication, a Single-Photon Avalanche Diode (SPAD) with photon-limited sensitivity is used to detect optical signals. In addition, most literatures do not specially design the data frames of ranging and communication, which makes it difficult to perform ranging and communication at the same time. In view of the fact that there is currently no systematic solution for simultaneous communication and high-precision ranging under underwater photon counting, this paper sorts out the relevant technical details, proposes an integrated ranging and communication scheme applied to photon counting, designs a special data frame that integrates ranging and communication, and proposes an extraction and recovery scheme for ranging and communication signals. Simulation shows that this scheme can achieve underwater photon counting wireless optical communication with a communication distance of 160m and an SER of 9.75×10-6, and the ranging accuracy is better than 1.59cm.\",\"PeriodicalId\":235893,\"journal\":{\"name\":\"2022 International Conference on Computing, Communication, Perception and Quantum Technology (CCPQT)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Computing, Communication, Perception and Quantum Technology (CCPQT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPQT56151.2022.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Computing, Communication, Perception and Quantum Technology (CCPQT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPQT56151.2022.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation of Integrated System of Photon-Counting Underwater Wireless Optical Ranging and Communication
Although many researchers have achieved wireless optical ranging and communication based on Avalanche Photon Diode (APD) detectors and PIN detectors. However, due to the low sensitivity of APD and PIN detectors, their working distances are limited. In order to achieve long-distance underwater wireless optical communication, a Single-Photon Avalanche Diode (SPAD) with photon-limited sensitivity is used to detect optical signals. In addition, most literatures do not specially design the data frames of ranging and communication, which makes it difficult to perform ranging and communication at the same time. In view of the fact that there is currently no systematic solution for simultaneous communication and high-precision ranging under underwater photon counting, this paper sorts out the relevant technical details, proposes an integrated ranging and communication scheme applied to photon counting, designs a special data frame that integrates ranging and communication, and proposes an extraction and recovery scheme for ranging and communication signals. Simulation shows that this scheme can achieve underwater photon counting wireless optical communication with a communication distance of 160m and an SER of 9.75×10-6, and the ranging accuracy is better than 1.59cm.