基于循环量子神经网络的脑机接口脑电图去噪

Vaibhav Gandhi, Vipul Arora, L. Behera, G. Prasad, D. Coyle, T. McGinnity
{"title":"基于循环量子神经网络的脑机接口脑电图去噪","authors":"Vaibhav Gandhi, Vipul Arora, L. Behera, G. Prasad, D. Coyle, T. McGinnity","doi":"10.1109/IJCNN.2011.6033413","DOIUrl":null,"url":null,"abstract":"Brain-computer interface (BCI) technology is a means of communication that allows individuals with severe movement disability to communicate with external assistive devices using the electroencephalogram (EEG) or other brain signals. This paper presents an alternative neural information processing architecture using the Schrödinger wave equation (SWE) for enhancement of the raw EEG signal. The raw EEG signal obtained during the motor imagery (MI) of a BCI user is intrinsically embedded with non-Gaussian noise while the actual signal is still a mystery. The proposed work in the field of recurrent quantum neural network (RQNN) is designed to filter such non-Gaussian noise using an unsupervised learning scheme without making any assumption about the signal type. The proposed learning architecture has been modified to do away with the Hebbian learning associated with the existing RQNN architecture as this learning scheme was found to be unstable for complex signals such as EEG. Besides, this the soliton behaviour of the non-linear SWE was not properly preserved in the existing scheme. The unsupervised learning algorithm proposed in this paper is able to efficiently capture the statistical behaviour of the input signal while making the algorithm robust to parametric sensitivity. This denoised EEG signal is then fed as an input to the feature extractor to obtain the Hjorth features. These features are then used to train a Linear Discriminant Analysis (LDA) classifier. It is shown that the accuracy of the classifier output over the training and the evaluation datasets using the filtered EEG is much higher compared to that using the raw EEG signal. The improvement in classification accuracy computed over nine subjects is found to be statistically significant.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"EEG denoising with a recurrent quantum neural network for a brain-computer interface\",\"authors\":\"Vaibhav Gandhi, Vipul Arora, L. Behera, G. Prasad, D. Coyle, T. McGinnity\",\"doi\":\"10.1109/IJCNN.2011.6033413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain-computer interface (BCI) technology is a means of communication that allows individuals with severe movement disability to communicate with external assistive devices using the electroencephalogram (EEG) or other brain signals. This paper presents an alternative neural information processing architecture using the Schrödinger wave equation (SWE) for enhancement of the raw EEG signal. The raw EEG signal obtained during the motor imagery (MI) of a BCI user is intrinsically embedded with non-Gaussian noise while the actual signal is still a mystery. The proposed work in the field of recurrent quantum neural network (RQNN) is designed to filter such non-Gaussian noise using an unsupervised learning scheme without making any assumption about the signal type. The proposed learning architecture has been modified to do away with the Hebbian learning associated with the existing RQNN architecture as this learning scheme was found to be unstable for complex signals such as EEG. Besides, this the soliton behaviour of the non-linear SWE was not properly preserved in the existing scheme. The unsupervised learning algorithm proposed in this paper is able to efficiently capture the statistical behaviour of the input signal while making the algorithm robust to parametric sensitivity. This denoised EEG signal is then fed as an input to the feature extractor to obtain the Hjorth features. These features are then used to train a Linear Discriminant Analysis (LDA) classifier. It is shown that the accuracy of the classifier output over the training and the evaluation datasets using the filtered EEG is much higher compared to that using the raw EEG signal. The improvement in classification accuracy computed over nine subjects is found to be statistically significant.\",\"PeriodicalId\":415833,\"journal\":{\"name\":\"The 2011 International Joint Conference on Neural Networks\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2011 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2011.6033413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

脑机接口(BCI)技术是一种通信手段,允许患有严重运动障碍的个体使用脑电图(EEG)或其他脑信号与外部辅助设备进行通信。本文提出了一种利用Schrödinger波动方程(SWE)增强原始脑电图信号的神经信息处理方法。脑机接口(BCI)用户在运动想象(MI)过程中获得的原始脑电图信号本质上嵌入了非高斯噪声,而实际信号仍然是一个谜。在循环量子神经网络(RQNN)领域提出的工作旨在使用无监督学习方案来过滤这种非高斯噪声,而无需对信号类型进行任何假设。提出的学习架构已被修改,以消除与现有RQNN架构相关的Hebbian学习,因为这种学习方案被发现对复杂信号(如EEG)不稳定。此外,现有方案没有很好地保留非线性SWE的孤子行为。本文提出的无监督学习算法能够有效地捕捉输入信号的统计行为,同时使算法对参数敏感性具有鲁棒性。然后将去噪后的EEG信号作为特征提取器的输入,得到Hjorth特征。然后使用这些特征来训练线性判别分析(LDA)分类器。结果表明,滤波后的脑电信号对训练数据集和评价数据集的分类器输出的准确率要比原始脑电信号高得多。在9个科目上计算的分类精度的提高被发现具有统计学意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EEG denoising with a recurrent quantum neural network for a brain-computer interface
Brain-computer interface (BCI) technology is a means of communication that allows individuals with severe movement disability to communicate with external assistive devices using the electroencephalogram (EEG) or other brain signals. This paper presents an alternative neural information processing architecture using the Schrödinger wave equation (SWE) for enhancement of the raw EEG signal. The raw EEG signal obtained during the motor imagery (MI) of a BCI user is intrinsically embedded with non-Gaussian noise while the actual signal is still a mystery. The proposed work in the field of recurrent quantum neural network (RQNN) is designed to filter such non-Gaussian noise using an unsupervised learning scheme without making any assumption about the signal type. The proposed learning architecture has been modified to do away with the Hebbian learning associated with the existing RQNN architecture as this learning scheme was found to be unstable for complex signals such as EEG. Besides, this the soliton behaviour of the non-linear SWE was not properly preserved in the existing scheme. The unsupervised learning algorithm proposed in this paper is able to efficiently capture the statistical behaviour of the input signal while making the algorithm robust to parametric sensitivity. This denoised EEG signal is then fed as an input to the feature extractor to obtain the Hjorth features. These features are then used to train a Linear Discriminant Analysis (LDA) classifier. It is shown that the accuracy of the classifier output over the training and the evaluation datasets using the filtered EEG is much higher compared to that using the raw EEG signal. The improvement in classification accuracy computed over nine subjects is found to be statistically significant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaos of protein folding EEG-based brain dynamics of driving distraction Residential energy system control and management using adaptive dynamic programming How the core theory of CLARION captures human decision-making Wiener systems for reconstruction of missing seismic traces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1