时间触发调度的动态干扰敏感运行时自适应

Stefanos Skalistis, A. Kritikakou
{"title":"时间触发调度的动态干扰敏感运行时自适应","authors":"Stefanos Skalistis, A. Kritikakou","doi":"10.4230/LIPIcs.ECRTS.2020.4","DOIUrl":null,"url":null,"abstract":"Over-approximated Worst-Case Execution Time (WCET) estimations for multi-cores lead to safe, but over-provisioned, systems and underutilized cores. To reduce WCET pessimism, interference-sensitive WCET (isWCET) estimations are used. Although they provide tighter WCET bounds, they are valid only for a specific schedule solution. Existing approaches have to maintain this isWCET schedule solution at run-time, via time-triggered execution, in order to be safe. Hence, any earlier execution of tasks, enabled by adapting the isWCET schedule solution, is not possible. In this paper, we present a dynamic approach that safely adapts isWCET schedules during execution, by relaxing or completely removing isWCET schedule dependencies, depending on the progress of each core. In this way, an earlier task execution is enabled, creating time slack that can be used by safety-critical and mixed-criticality systems to provide higher Quality-of-Services or execute other best-effort applications. The Response-Time Analysis (RTA) of the proposed approach is presented, showing that although the approach is dynamic, it is fully predictable with bounded WCET. To support our contribution, we evaluate the behavior and the scalability of the proposed approach for different application types and execution configurations on the 8-core Texas Instruments TMS320C6678 platform, obtaining significant performance improvements compared to static approaches.","PeriodicalId":191379,"journal":{"name":"Euromicro Conference on Real-Time Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Dynamic Interference-Sensitive Run-time Adaptation of Time-Triggered Schedules\",\"authors\":\"Stefanos Skalistis, A. Kritikakou\",\"doi\":\"10.4230/LIPIcs.ECRTS.2020.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over-approximated Worst-Case Execution Time (WCET) estimations for multi-cores lead to safe, but over-provisioned, systems and underutilized cores. To reduce WCET pessimism, interference-sensitive WCET (isWCET) estimations are used. Although they provide tighter WCET bounds, they are valid only for a specific schedule solution. Existing approaches have to maintain this isWCET schedule solution at run-time, via time-triggered execution, in order to be safe. Hence, any earlier execution of tasks, enabled by adapting the isWCET schedule solution, is not possible. In this paper, we present a dynamic approach that safely adapts isWCET schedules during execution, by relaxing or completely removing isWCET schedule dependencies, depending on the progress of each core. In this way, an earlier task execution is enabled, creating time slack that can be used by safety-critical and mixed-criticality systems to provide higher Quality-of-Services or execute other best-effort applications. The Response-Time Analysis (RTA) of the proposed approach is presented, showing that although the approach is dynamic, it is fully predictable with bounded WCET. To support our contribution, we evaluate the behavior and the scalability of the proposed approach for different application types and execution configurations on the 8-core Texas Instruments TMS320C6678 platform, obtaining significant performance improvements compared to static approaches.\",\"PeriodicalId\":191379,\"journal\":{\"name\":\"Euromicro Conference on Real-Time Systems\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Euromicro Conference on Real-Time Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.ECRTS.2020.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Euromicro Conference on Real-Time Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ECRTS.2020.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

对多核的最坏情况执行时间(WCET)估计过近,导致系统安全,但供应过多,内核利用率不足。为了减少WCET的悲观情绪,使用干扰敏感WCET (isWCET)估计。尽管它们提供了更严格的WCET边界,但它们仅对特定的调度解决方案有效。为了安全,现有的方法必须在运行时通过时间触发执行来维护这个isWCET调度解决方案。因此,任何通过调整isWCET调度解决方案而启用的任务的早期执行都是不可能的。在本文中,我们提出了一种动态的方法,通过放松或完全消除isWCET调度依赖,根据每个核心的进度,在执行过程中安全地适应isWCET调度。通过这种方式,可以启用更早的任务执行,从而创建时间空闲,安全关键型和混合关键型系统可以使用该空闲时间来提供更高的服务质量或执行其他尽力而为的应用程序。给出了该方法的响应时间分析(RTA),表明该方法虽然是动态的,但在有界WCET下是完全可预测的。为了支持我们的贡献,我们在8核Texas Instruments TMS320C6678平台上评估了所提出方法在不同应用类型和执行配置下的行为和可扩展性,与静态方法相比,获得了显着的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Interference-Sensitive Run-time Adaptation of Time-Triggered Schedules
Over-approximated Worst-Case Execution Time (WCET) estimations for multi-cores lead to safe, but over-provisioned, systems and underutilized cores. To reduce WCET pessimism, interference-sensitive WCET (isWCET) estimations are used. Although they provide tighter WCET bounds, they are valid only for a specific schedule solution. Existing approaches have to maintain this isWCET schedule solution at run-time, via time-triggered execution, in order to be safe. Hence, any earlier execution of tasks, enabled by adapting the isWCET schedule solution, is not possible. In this paper, we present a dynamic approach that safely adapts isWCET schedules during execution, by relaxing or completely removing isWCET schedule dependencies, depending on the progress of each core. In this way, an earlier task execution is enabled, creating time slack that can be used by safety-critical and mixed-criticality systems to provide higher Quality-of-Services or execute other best-effort applications. The Response-Time Analysis (RTA) of the proposed approach is presented, showing that although the approach is dynamic, it is fully predictable with bounded WCET. To support our contribution, we evaluate the behavior and the scalability of the proposed approach for different application types and execution configurations on the 8-core Texas Instruments TMS320C6678 platform, obtaining significant performance improvements compared to static approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Interference-Sensitive Run-time Adaptation of Time-Triggered Schedules Attack Detection Through Monitoring of Timing Deviations in Embedded Real-Time Systems Fixed-Priority Memory-Centric Scheduler for COTS-Based Multiprocessors Hiding Communication Delays in Contention-Free Execution for SPM-Based Multi-Core Architectures Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1