多任务稀疏度量学习监测患者相似性进展

Qiuling Suo, Weida Zhong, Fenglong Ma, Ye Yuan, Mengdi Huai, Aidong Zhang
{"title":"多任务稀疏度量学习监测患者相似性进展","authors":"Qiuling Suo, Weida Zhong, Fenglong Ma, Ye Yuan, Mengdi Huai, Aidong Zhang","doi":"10.1109/ICDM.2018.00063","DOIUrl":null,"url":null,"abstract":"A clinically meaningful distance metric, which is learned from measuring patient similarity, plays an important role in clinical decision support applications. Several metric learning approaches have been proposed to measure patient similarity, but they are mostly designed for learning the metric at only one time point/interval. It leads to a problem that those approaches cannot reflect the similarity variations among patients with the progression of diseases. In order to capture similarity information from multiple future time points simultaneously, we formulate a multi-task metric learning approach to identify patient similarity. However, it is challenging to directly apply traditional multi-task metric learning methods to learn such similarities due to the high dimensional, complex and noisy nature of healthcare data. Besides, the disease labels often have clinical relationships, which should not be treated as independent. Unfortunately, traditional formulation of the loss function ignores the degree of labels' similarity. To tackle the aforementioned challenges, we propose mtTSML, a multi-task triplet constrained sparse metric learning method, to monitor the similarity progression of patient pairs. In the proposed model, the distance for each task can be regarded as the combination of a common part and a task-specific one in the transformed low-rank space. We then perform sparse feature selection for each individual task to select the most discriminative information. Moreover, we use triplet constraints to guarantee the margin between similar and less similar pairs according to the ordered information of disease severity levels (i.e. labels). The experimental results on two real-world healthcare datasets show that the proposed multi-task metric learning method significantly outperforms the state-of-the-art baselines, including both single-task and multi-task metric learning methods.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Multi-task Sparse Metric Learning for Monitoring Patient Similarity Progression\",\"authors\":\"Qiuling Suo, Weida Zhong, Fenglong Ma, Ye Yuan, Mengdi Huai, Aidong Zhang\",\"doi\":\"10.1109/ICDM.2018.00063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A clinically meaningful distance metric, which is learned from measuring patient similarity, plays an important role in clinical decision support applications. Several metric learning approaches have been proposed to measure patient similarity, but they are mostly designed for learning the metric at only one time point/interval. It leads to a problem that those approaches cannot reflect the similarity variations among patients with the progression of diseases. In order to capture similarity information from multiple future time points simultaneously, we formulate a multi-task metric learning approach to identify patient similarity. However, it is challenging to directly apply traditional multi-task metric learning methods to learn such similarities due to the high dimensional, complex and noisy nature of healthcare data. Besides, the disease labels often have clinical relationships, which should not be treated as independent. Unfortunately, traditional formulation of the loss function ignores the degree of labels' similarity. To tackle the aforementioned challenges, we propose mtTSML, a multi-task triplet constrained sparse metric learning method, to monitor the similarity progression of patient pairs. In the proposed model, the distance for each task can be regarded as the combination of a common part and a task-specific one in the transformed low-rank space. We then perform sparse feature selection for each individual task to select the most discriminative information. Moreover, we use triplet constraints to guarantee the margin between similar and less similar pairs according to the ordered information of disease severity levels (i.e. labels). The experimental results on two real-world healthcare datasets show that the proposed multi-task metric learning method significantly outperforms the state-of-the-art baselines, including both single-task and multi-task metric learning methods.\",\"PeriodicalId\":286444,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining (ICDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2018.00063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

从测量患者相似度中学到的具有临床意义的距离度量在临床决策支持应用中起着重要作用。已经提出了几种度量学习方法来测量患者相似性,但它们大多设计用于仅在一个时间点/间隔学习度量。这导致了一个问题,即这些方法不能反映疾病进展的患者之间的相似性差异。为了同时从多个未来时间点获取相似度信息,我们制定了一种多任务度量学习方法来识别患者相似度。然而,由于医疗保健数据的高维、复杂和噪声特性,直接应用传统的多任务度量学习方法来学习这种相似性是具有挑战性的。此外,疾病标签往往具有临床关系,不应被视为独立的。遗憾的是,传统的损失函数公式忽略了标签的相似度。为了解决上述挑战,我们提出了一种多任务三重约束稀疏度量学习方法mtTSML来监测患者对的相似性进展。在该模型中,每个任务的距离可以看作是变换后的低秩空间中公共部分和特定任务部分的结合。然后,我们对每个单独的任务进行稀疏特征选择,以选择最具判别性的信息。此外,根据疾病严重程度的有序信息(即标签),我们使用三元组约束来保证相似对和不太相似对之间的裕度。在两个真实医疗数据集上的实验结果表明,所提出的多任务度量学习方法显著优于最先进的基线,包括单任务和多任务度量学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-task Sparse Metric Learning for Monitoring Patient Similarity Progression
A clinically meaningful distance metric, which is learned from measuring patient similarity, plays an important role in clinical decision support applications. Several metric learning approaches have been proposed to measure patient similarity, but they are mostly designed for learning the metric at only one time point/interval. It leads to a problem that those approaches cannot reflect the similarity variations among patients with the progression of diseases. In order to capture similarity information from multiple future time points simultaneously, we formulate a multi-task metric learning approach to identify patient similarity. However, it is challenging to directly apply traditional multi-task metric learning methods to learn such similarities due to the high dimensional, complex and noisy nature of healthcare data. Besides, the disease labels often have clinical relationships, which should not be treated as independent. Unfortunately, traditional formulation of the loss function ignores the degree of labels' similarity. To tackle the aforementioned challenges, we propose mtTSML, a multi-task triplet constrained sparse metric learning method, to monitor the similarity progression of patient pairs. In the proposed model, the distance for each task can be regarded as the combination of a common part and a task-specific one in the transformed low-rank space. We then perform sparse feature selection for each individual task to select the most discriminative information. Moreover, we use triplet constraints to guarantee the margin between similar and less similar pairs according to the ordered information of disease severity levels (i.e. labels). The experimental results on two real-world healthcare datasets show that the proposed multi-task metric learning method significantly outperforms the state-of-the-art baselines, including both single-task and multi-task metric learning methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entire Regularization Path for Sparse Nonnegative Interaction Model Accelerating Experimental Design by Incorporating Experimenter Hunches Title Page i An Efficient Many-Class Active Learning Framework for Knowledge-Rich Domains Social Recommendation with Missing Not at Random Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1