计算智能-从序列中自动学习的广泛倡议

M.Q. Yang, J.Y. Yang, O. Ersoy
{"title":"计算智能-从序列中自动学习的广泛倡议","authors":"M.Q. Yang, J.Y. Yang, O. Ersoy","doi":"10.1109/CIMA.2005.1662326","DOIUrl":null,"url":null,"abstract":"In our attempts to construct methods for automated structural prediction and annotation of proteins as well as automated drug design and discovery, the identification of structure and function from the primary structure of a protein is an important, but difficult problem. We extract features using biophysical properties of the different amino acids and using the patterns of poly-peptide sequences. Based on these features we construct different predictors for different tasks. We demonstrate that our classifiers compare favorably to existing classifiers, and we experiment with the use of ensemble methods to enhance our predictors' accuracies and explaining powers. We showed the synergy of approaches from computational intelligence and biophysics is powerful. This work has particular relevance for the study of ion-channels, ligand binding sites, and alternative splicing","PeriodicalId":306045,"journal":{"name":"2005 ICSC Congress on Computational Intelligence Methods and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computational intelligence - a broad initiative in automated learning from sequences\",\"authors\":\"M.Q. Yang, J.Y. Yang, O. Ersoy\",\"doi\":\"10.1109/CIMA.2005.1662326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our attempts to construct methods for automated structural prediction and annotation of proteins as well as automated drug design and discovery, the identification of structure and function from the primary structure of a protein is an important, but difficult problem. We extract features using biophysical properties of the different amino acids and using the patterns of poly-peptide sequences. Based on these features we construct different predictors for different tasks. We demonstrate that our classifiers compare favorably to existing classifiers, and we experiment with the use of ensemble methods to enhance our predictors' accuracies and explaining powers. We showed the synergy of approaches from computational intelligence and biophysics is powerful. This work has particular relevance for the study of ion-channels, ligand binding sites, and alternative splicing\",\"PeriodicalId\":306045,\"journal\":{\"name\":\"2005 ICSC Congress on Computational Intelligence Methods and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 ICSC Congress on Computational Intelligence Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIMA.2005.1662326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 ICSC Congress on Computational Intelligence Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMA.2005.1662326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在构建蛋白质的自动结构预测和注释方法以及自动药物设计和发现方法的尝试中,从蛋白质的一级结构识别结构和功能是一个重要但困难的问题。我们利用不同氨基酸的生物物理特性和多肽序列的模式提取特征。基于这些特征,我们为不同的任务构建了不同的预测器。我们证明了我们的分类器比现有的分类器更有利,并且我们尝试使用集成方法来提高我们的预测器的准确性和解释能力。我们展示了计算智能和生物物理学方法的协同作用是强大的。这项工作与离子通道、配体结合位点和选择性剪接的研究特别相关
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational intelligence - a broad initiative in automated learning from sequences
In our attempts to construct methods for automated structural prediction and annotation of proteins as well as automated drug design and discovery, the identification of structure and function from the primary structure of a protein is an important, but difficult problem. We extract features using biophysical properties of the different amino acids and using the patterns of poly-peptide sequences. Based on these features we construct different predictors for different tasks. We demonstrate that our classifiers compare favorably to existing classifiers, and we experiment with the use of ensemble methods to enhance our predictors' accuracies and explaining powers. We showed the synergy of approaches from computational intelligence and biophysics is powerful. This work has particular relevance for the study of ion-channels, ligand binding sites, and alternative splicing
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A comparison of fuzzy, state space with direct eigenstructure assignment, and PID controller on linearized MIMO plant model Measurement of the cross-sectional contour of H-shaped steel using multiple stereo pairs Feature selection based on bootstrapping Eigenvector methods for automated detection of time-varying biomedical signals Animal toxins: what features differentiate pore blockers from gate modifiers?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1