非均匀网格上的山聚类

J. T. Rickard, R. Yager, W. Miller
{"title":"非均匀网格上的山聚类","authors":"J. T. Rickard, R. Yager, W. Miller","doi":"10.1109/AIPR.2004.31","DOIUrl":null,"url":null,"abstract":"We describe an improvement on the mountain method (MM) of clustering originally proposed by Yager and Filev. The new technique employs a data-driven, hierarchical partitioning of the data set to be clustered, using a \"p-tree\" algorithm. The centroids of data subsets in the terminal nodes of the p-tree are the set of candidate cluster centers to which the iterative candidate cluster center selection process of MM is applied. As the data dimension and/or the number of uniform grid lines used in the original MM increases, our approach requires exponentially fewer cluster centers to be evaluated by the MM selection algorithm. Sample data sets illustrate the performance of this new technique.","PeriodicalId":120814,"journal":{"name":"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Mountain clustering on nonuniform grids\",\"authors\":\"J. T. Rickard, R. Yager, W. Miller\",\"doi\":\"10.1109/AIPR.2004.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe an improvement on the mountain method (MM) of clustering originally proposed by Yager and Filev. The new technique employs a data-driven, hierarchical partitioning of the data set to be clustered, using a \\\"p-tree\\\" algorithm. The centroids of data subsets in the terminal nodes of the p-tree are the set of candidate cluster centers to which the iterative candidate cluster center selection process of MM is applied. As the data dimension and/or the number of uniform grid lines used in the original MM increases, our approach requires exponentially fewer cluster centers to be evaluated by the MM selection algorithm. Sample data sets illustrate the performance of this new technique.\",\"PeriodicalId\":120814,\"journal\":{\"name\":\"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)\",\"volume\":\"176 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2004.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2004.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们描述了对Yager和Filev最初提出的山法(MM)聚类的改进。新技术采用数据驱动的分层划分,使用“p树”算法对数据集进行聚类。p-tree终端节点的数据子集的质心是应用MM迭代候选聚类中心选择过程的候选聚类中心集合。随着原始MM中使用的数据维度和/或均匀网格线数量的增加,我们的方法需要MM选择算法评估的聚类中心呈指数级减少。示例数据集说明了这种新技术的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mountain clustering on nonuniform grids
We describe an improvement on the mountain method (MM) of clustering originally proposed by Yager and Filev. The new technique employs a data-driven, hierarchical partitioning of the data set to be clustered, using a "p-tree" algorithm. The centroids of data subsets in the terminal nodes of the p-tree are the set of candidate cluster centers to which the iterative candidate cluster center selection process of MM is applied. As the data dimension and/or the number of uniform grid lines used in the original MM increases, our approach requires exponentially fewer cluster centers to be evaluated by the MM selection algorithm. Sample data sets illustrate the performance of this new technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Top-down approach to segmentation of prostate boundaries in ultrasound images Computation in the higher visual cortices: map-seeking circuit theory and application to machine vision Neurally-based algorithms for image processing Image primitive signatures A multiresolution time domain approach to RF image formation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1