多目标VLSI布局的模糊无偏差模拟进化

J. Khan, S. M. Sait, M. Minhas
{"title":"多目标VLSI布局的模糊无偏差模拟进化","authors":"J. Khan, S. M. Sait, M. Minhas","doi":"10.1109/CEC.2002.1004488","DOIUrl":null,"url":null,"abstract":"In each iteration of a simulated evolution (SE) algorithm for VLSI placement, poorly placed cells are selected probabilistically, based on a measure known as 'goodness'. To compensate for the error in the goodness calculation (and to maintain the number of selected cells within some limit), a parameter known as 'bias' is used, which has major impact on the algorithm's run-time and on the quality of the solution subspace searched. However, it is difficult to select the appropriate value of this selection bias because it varies for each problem instance. In this paper, a biasless selection scheme for the SE algorithm is proposed. This scheme eliminates the human interaction needed in the selection of the bias value for each problem instance. Due to the imprecise nature of the design information at the placement stage, fuzzy logic is used in all stages of the SE algorithm. The proposed scheme was compared with an adaptive bias scheme and was always able to achieve better solutions.","PeriodicalId":184547,"journal":{"name":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Fuzzy biasless simulated evolution for multiobjective VLSI placement\",\"authors\":\"J. Khan, S. M. Sait, M. Minhas\",\"doi\":\"10.1109/CEC.2002.1004488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In each iteration of a simulated evolution (SE) algorithm for VLSI placement, poorly placed cells are selected probabilistically, based on a measure known as 'goodness'. To compensate for the error in the goodness calculation (and to maintain the number of selected cells within some limit), a parameter known as 'bias' is used, which has major impact on the algorithm's run-time and on the quality of the solution subspace searched. However, it is difficult to select the appropriate value of this selection bias because it varies for each problem instance. In this paper, a biasless selection scheme for the SE algorithm is proposed. This scheme eliminates the human interaction needed in the selection of the bias value for each problem instance. Due to the imprecise nature of the design information at the placement stage, fuzzy logic is used in all stages of the SE algorithm. The proposed scheme was compared with an adaptive bias scheme and was always able to achieve better solutions.\",\"PeriodicalId\":184547,\"journal\":{\"name\":\"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2002.1004488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2002.1004488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在VLSI放置的模拟进化(SE)算法的每次迭代中,基于称为“优度”的度量,概率地选择放置不良的单元。为了补偿优度计算中的误差(并将所选单元格的数量保持在一定范围内),使用了一个称为“bias”的参数,该参数对算法的运行时间和搜索的解子空间的质量有重大影响。然而,很难选择这个选择偏差的适当值,因为它在每个问题实例中都是不同的。本文提出了一种针对SE算法的无偏选方案。该方案消除了在选择每个问题实例的偏差值时所需的人工交互。由于在放置阶段设计信息的不精确性,模糊逻辑在SE算法的所有阶段都被使用。该方案与自适应偏置方案进行了比较,总能得到更好的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fuzzy biasless simulated evolution for multiobjective VLSI placement
In each iteration of a simulated evolution (SE) algorithm for VLSI placement, poorly placed cells are selected probabilistically, based on a measure known as 'goodness'. To compensate for the error in the goodness calculation (and to maintain the number of selected cells within some limit), a parameter known as 'bias' is used, which has major impact on the algorithm's run-time and on the quality of the solution subspace searched. However, it is difficult to select the appropriate value of this selection bias because it varies for each problem instance. In this paper, a biasless selection scheme for the SE algorithm is proposed. This scheme eliminates the human interaction needed in the selection of the bias value for each problem instance. Due to the imprecise nature of the design information at the placement stage, fuzzy logic is used in all stages of the SE algorithm. The proposed scheme was compared with an adaptive bias scheme and was always able to achieve better solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of FPGA based adaptive image enhancement filter system using genetic algorithms Intelligent predictive control of a power plant with evolutionary programming optimizer and neuro-fuzzy identifier Blocked stochastic sampling versus Estimation of Distribution Algorithms Distinguishing adaptive from non-adaptive evolution using Ashby's law of requisite variety An artificial immune network for multimodal function optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1