健康消费者社会标签的内容分析

Soohyung Joo, Yunseon Choi
{"title":"健康消费者社会标签的内容分析","authors":"Soohyung Joo, Yunseon Choi","doi":"10.1145/2756406.2756959","DOIUrl":null,"url":null,"abstract":"This poster presents preliminary findings of user tag analysis in the domain of consumer health information. To obtain user terms, 36,205 tags from 38 consumer health information sites were collected from delicious.com. Content analysis was applied to identify the dimensions and types of the collected tags. The preliminary findings showed that user generated tags covers a variety of aspects of health information, ranging from general terms, subject terms, knowledge type, and to audience. General terms and subject terms were observed dominantly by showing 31.7% and 22.8% respectively.","PeriodicalId":256118,"journal":{"name":"Proceedings of the 15th ACM/IEEE-CS Joint Conference on Digital Libraries","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Content Analysis of Social Tags Generated by Health Consumers\",\"authors\":\"Soohyung Joo, Yunseon Choi\",\"doi\":\"10.1145/2756406.2756959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This poster presents preliminary findings of user tag analysis in the domain of consumer health information. To obtain user terms, 36,205 tags from 38 consumer health information sites were collected from delicious.com. Content analysis was applied to identify the dimensions and types of the collected tags. The preliminary findings showed that user generated tags covers a variety of aspects of health information, ranging from general terms, subject terms, knowledge type, and to audience. General terms and subject terms were observed dominantly by showing 31.7% and 22.8% respectively.\",\"PeriodicalId\":256118,\"journal\":{\"name\":\"Proceedings of the 15th ACM/IEEE-CS Joint Conference on Digital Libraries\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th ACM/IEEE-CS Joint Conference on Digital Libraries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2756406.2756959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM/IEEE-CS Joint Conference on Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2756406.2756959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这张海报介绍了用户标签分析在消费者健康信息领域的初步发现。为了获得用户条款,从delicious网站上收集了来自38个消费者健康信息网站的36,205个标签。内容分析用于识别所收集标签的维度和类型。初步研究结果表明,用户生成的标签涵盖了健康信息的各个方面,从一般术语、主题术语、知识类型到受众。一般术语和主题词占主导地位,分别占31.7%和22.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Content Analysis of Social Tags Generated by Health Consumers
This poster presents preliminary findings of user tag analysis in the domain of consumer health information. To obtain user terms, 36,205 tags from 38 consumer health information sites were collected from delicious.com. Content analysis was applied to identify the dimensions and types of the collected tags. The preliminary findings showed that user generated tags covers a variety of aspects of health information, ranging from general terms, subject terms, knowledge type, and to audience. General terms and subject terms were observed dominantly by showing 31.7% and 22.8% respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Classifiers and User Feedback for Disambiguating Author Names Improving Access to Large-scale Digital Libraries ThroughSemantic-enhanced Search and Disambiguation ConfAssist: A Conflict Resolution Framework for Assisting the Categorization of Computer Science Conferences The HathiTrust Research Center: Providing analytic access to the HathiTrust Digital Library's 4.7 billion pages Scholarly Document Information Extraction using Extensible Features for Efficient Higher Order Semi-CRFs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1