基于二元混合粒子群优化和引力搜索算法的电动汽车V2G和G2V优化

Vishu Gupta, S. Reddy K, L. Panwar, R. Kumar, B. Panigrahi
{"title":"基于二元混合粒子群优化和引力搜索算法的电动汽车V2G和G2V优化","authors":"Vishu Gupta, S. Reddy K, L. Panwar, R. Kumar, B. Panigrahi","doi":"10.1109/WIECON-ECE.2017.8468892","DOIUrl":null,"url":null,"abstract":"The smart grid paradigm enables improved participation of customers in operational aspects of power system. The optimal charge-discharge operation of electric vehicles (EV) is one of the means for improvising such customer participation. Therefore, this paper presents a hybrid meta heuristic approach using particle swarm optimization and gravitational search algorithm for optimal charge-discharge event management of EVs in smart grid. The same is carried out in conjunction with the unit commitment procedure of power system operation. The UC problem belongs to the class of binary optimization problems where the search space is constricted to binary digits. For this, the real valued optimization variables and process is mapped to binary version using tangent hyperbolic transformation. The effectiveness of BHPSO-GSA is examined through extensive numerical experiments on various scenarios. The simulation results are presented, discussed and compared to other existing approaches to demonstrate the superiority of proposed approach in solving UC problem with and without EV in smart grid.","PeriodicalId":188031,"journal":{"name":"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimal V2G and G2V Operation of Electric Vehicles using Binary Hybrid Particle Swarm Optimization and Gravitational Search Algorithm\",\"authors\":\"Vishu Gupta, S. Reddy K, L. Panwar, R. Kumar, B. Panigrahi\",\"doi\":\"10.1109/WIECON-ECE.2017.8468892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The smart grid paradigm enables improved participation of customers in operational aspects of power system. The optimal charge-discharge operation of electric vehicles (EV) is one of the means for improvising such customer participation. Therefore, this paper presents a hybrid meta heuristic approach using particle swarm optimization and gravitational search algorithm for optimal charge-discharge event management of EVs in smart grid. The same is carried out in conjunction with the unit commitment procedure of power system operation. The UC problem belongs to the class of binary optimization problems where the search space is constricted to binary digits. For this, the real valued optimization variables and process is mapped to binary version using tangent hyperbolic transformation. The effectiveness of BHPSO-GSA is examined through extensive numerical experiments on various scenarios. The simulation results are presented, discussed and compared to other existing approaches to demonstrate the superiority of proposed approach in solving UC problem with and without EV in smart grid.\",\"PeriodicalId\":188031,\"journal\":{\"name\":\"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIECON-ECE.2017.8468892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIECON-ECE.2017.8468892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

智能电网模式使客户能够更好地参与电力系统的运营方面。电动汽车的最优充放电操作是实现这种用户参与的一种手段。为此,本文提出了一种基于粒子群算法和引力搜索算法的混合元启发式方法,用于智能电网电动汽车的最优充放电事件管理。与电力系统运行的机组调试程序同时进行。UC问题属于二进制优化问题,其中搜索空间被限制为二进制数。为此,利用正切双曲变换将实值优化变量和过程映射到二进制版本。BHPSO-GSA的有效性通过各种场景的大量数值实验进行了检验。给出了仿真结果,并与其他现有方法进行了讨论和比较,以证明所提出的方法在解决智能电网中有和没有电动汽车的UC问题方面的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal V2G and G2V Operation of Electric Vehicles using Binary Hybrid Particle Swarm Optimization and Gravitational Search Algorithm
The smart grid paradigm enables improved participation of customers in operational aspects of power system. The optimal charge-discharge operation of electric vehicles (EV) is one of the means for improvising such customer participation. Therefore, this paper presents a hybrid meta heuristic approach using particle swarm optimization and gravitational search algorithm for optimal charge-discharge event management of EVs in smart grid. The same is carried out in conjunction with the unit commitment procedure of power system operation. The UC problem belongs to the class of binary optimization problems where the search space is constricted to binary digits. For this, the real valued optimization variables and process is mapped to binary version using tangent hyperbolic transformation. The effectiveness of BHPSO-GSA is examined through extensive numerical experiments on various scenarios. The simulation results are presented, discussed and compared to other existing approaches to demonstrate the superiority of proposed approach in solving UC problem with and without EV in smart grid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Price Aware Residential Demand Response With Renewable Sources and Electric Vehicle Enhanced Power Generation from Piezoelectric System under Partial Vibration Condition Implementation of ABC Algorithm To Solve Simultaneous Substation Expansion And Transmission Expansion Planning Optimal PMU Placement for Complete Power System Observability under (P–1) Contingency Nanotechnology-Based Efficient Fault Tolerant Decoder in Reversible Logic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1