使用最小二乘对抗学习的动态背景减法

M. Sultana, Arif Mahmood, T. Bouwmans, Soon Ki Jung
{"title":"使用最小二乘对抗学习的动态背景减法","authors":"M. Sultana, Arif Mahmood, T. Bouwmans, Soon Ki Jung","doi":"10.1109/ICIP40778.2020.9191235","DOIUrl":null,"url":null,"abstract":"Dynamic Background Subtraction (BS) is a fundamental problem in many vision-based applications. BS in real complex environments has several challenging conditions like illumination variations, shadows, camera jitters, and bad weather. In this study, we aim to address the challenges of BS in complex scenes by exploiting conditional least squares adversarial networks. During training, a scene-specific conditional least squares adversarial network with two additional regularizations including L1-Loss and Perceptual-Loss is employed to learn the dynamic background variations. The given input to the model is video frames conditioned on corresponding ground truth to learn the dynamic changes in complex scenes. Afterwards, testing is performed on unseen test video frames so that the generator would conduct dynamic background subtraction. The proposed method consisting of three loss-terms including least squares adversarial loss, L1-Loss and Perceptual-Loss is evaluated on two benchmark datasets CDnet2014 and BMC. The results of our proposed method show improved performance on both datasets compared with 10 existing state-of-the-art methods.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Dynamic Background Subtraction Using Least Square Adversarial Learning\",\"authors\":\"M. Sultana, Arif Mahmood, T. Bouwmans, Soon Ki Jung\",\"doi\":\"10.1109/ICIP40778.2020.9191235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic Background Subtraction (BS) is a fundamental problem in many vision-based applications. BS in real complex environments has several challenging conditions like illumination variations, shadows, camera jitters, and bad weather. In this study, we aim to address the challenges of BS in complex scenes by exploiting conditional least squares adversarial networks. During training, a scene-specific conditional least squares adversarial network with two additional regularizations including L1-Loss and Perceptual-Loss is employed to learn the dynamic background variations. The given input to the model is video frames conditioned on corresponding ground truth to learn the dynamic changes in complex scenes. Afterwards, testing is performed on unseen test video frames so that the generator would conduct dynamic background subtraction. The proposed method consisting of three loss-terms including least squares adversarial loss, L1-Loss and Perceptual-Loss is evaluated on two benchmark datasets CDnet2014 and BMC. The results of our proposed method show improved performance on both datasets compared with 10 existing state-of-the-art methods.\",\"PeriodicalId\":405734,\"journal\":{\"name\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP40778.2020.9191235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9191235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

动态背景减法(BS)是许多基于视觉的应用中的一个基本问题。BS在真实的复杂环境中有几个具有挑战性的条件,如照明变化,阴影,相机抖动和恶劣天气。在本研究中,我们的目标是通过利用条件最小二乘对抗网络来解决复杂场景中BS的挑战。在训练过程中,使用一个场景特定的条件最小二乘对抗网络,其中包含两个额外的正则化,包括L1-Loss和perception - loss,来学习动态背景变化。模型的给定输入是基于相应的ground truth条件的视频帧,以学习复杂场景中的动态变化。然后,对未见过的测试视频帧进行测试,以便生成器进行动态背景减法。该方法由最小二乘对抗损失、l1损失和感知损失三个损失项组成,并在CDnet2014和BMC两个基准数据集上进行了评估。与现有的10种最先进的方法相比,我们提出的方法在两个数据集上的性能都有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Background Subtraction Using Least Square Adversarial Learning
Dynamic Background Subtraction (BS) is a fundamental problem in many vision-based applications. BS in real complex environments has several challenging conditions like illumination variations, shadows, camera jitters, and bad weather. In this study, we aim to address the challenges of BS in complex scenes by exploiting conditional least squares adversarial networks. During training, a scene-specific conditional least squares adversarial network with two additional regularizations including L1-Loss and Perceptual-Loss is employed to learn the dynamic background variations. The given input to the model is video frames conditioned on corresponding ground truth to learn the dynamic changes in complex scenes. Afterwards, testing is performed on unseen test video frames so that the generator would conduct dynamic background subtraction. The proposed method consisting of three loss-terms including least squares adversarial loss, L1-Loss and Perceptual-Loss is evaluated on two benchmark datasets CDnet2014 and BMC. The results of our proposed method show improved performance on both datasets compared with 10 existing state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Adversarial Active Learning With Model Uncertainty For Image Classification Emotion Transformation Feature: Novel Feature For Deception Detection In Videos Object Segmentation In Electrical Impedance Tomography For Tactile Sensing A Syndrome-Based Autoencoder For Point Cloud Geometry Compression A Comparison Of Compressed Sensing And Dnn Based Reconstruction For Ghost Motion Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1