基于测地线的路面阴影移除

Qin Zou, Zhongwen Hu, Long Chen, Qian Wang, Qingquan Li
{"title":"基于测地线的路面阴影移除","authors":"Qin Zou, Zhongwen Hu, Long Chen, Qian Wang, Qingquan Li","doi":"10.1109/ICASSP.2016.7471979","DOIUrl":null,"url":null,"abstract":"Shadows often incur uneven illumination to pavement images, which brings great challenges to image-based pavement crack detection. Thus, it is desired to remove pavement shadows before detecting pavement cracks. However, due to the large penumbras cast by trees, light poles, etc., it is difficult to locate shadows in a pavement image. In this paper, an automatic pavement shadow removal method is proposed based on geodesic analysis. First, a geodesic shadow model is used to partition a pavement shadow into a number of geodesic regions. Then, an optimal background region is selected for reference by statistic analysis. Finally, a texture-balanced illuminance compensation is applied on all geodesic regions over the image. Experiments demonstrate the effectiveness of the proposed method.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Geodesic-based pavement shadow removal revisited\",\"authors\":\"Qin Zou, Zhongwen Hu, Long Chen, Qian Wang, Qingquan Li\",\"doi\":\"10.1109/ICASSP.2016.7471979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shadows often incur uneven illumination to pavement images, which brings great challenges to image-based pavement crack detection. Thus, it is desired to remove pavement shadows before detecting pavement cracks. However, due to the large penumbras cast by trees, light poles, etc., it is difficult to locate shadows in a pavement image. In this paper, an automatic pavement shadow removal method is proposed based on geodesic analysis. First, a geodesic shadow model is used to partition a pavement shadow into a number of geodesic regions. Then, an optimal background region is selected for reference by statistic analysis. Finally, a texture-balanced illuminance compensation is applied on all geodesic regions over the image. Experiments demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":165321,\"journal\":{\"name\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2016.7471979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7471979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

阴影会导致路面图像光照不均匀,给基于图像的路面裂缝检测带来很大挑战。因此,在检测路面裂缝之前,需要先去除路面阴影。然而,由于树木、灯杆等投射的大半影,在路面图像中很难定位阴影。本文提出了一种基于测地线分析的路面阴影自动去除方法。首先,利用测地线阴影模型将路面阴影划分为多个测地线区域。然后通过统计分析选择一个最优的背景区域作为参考。最后,对图像上的所有测地线区域进行纹理平衡的照度补偿。实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Geodesic-based pavement shadow removal revisited
Shadows often incur uneven illumination to pavement images, which brings great challenges to image-based pavement crack detection. Thus, it is desired to remove pavement shadows before detecting pavement cracks. However, due to the large penumbras cast by trees, light poles, etc., it is difficult to locate shadows in a pavement image. In this paper, an automatic pavement shadow removal method is proposed based on geodesic analysis. First, a geodesic shadow model is used to partition a pavement shadow into a number of geodesic regions. Then, an optimal background region is selected for reference by statistic analysis. Finally, a texture-balanced illuminance compensation is applied on all geodesic regions over the image. Experiments demonstrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-stabilized deep neural network An acoustic keystroke transient canceler for speech communication terminals using a semi-blind adaptive filter model Data sketching for large-scale Kalman filtering Improved decoding of analog modulo block codes for noise mitigation An expectation-maximization eigenvector clustering approach to direction of arrival estimation of multiple speech sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1